组合数学$1排列组合

本文深入探讨了组合数学中的排列与组合概念,包括计数原理、排列的线性排列与循环排列、组合的计算公式,以及二项式系数的意义。通过帕斯卡三角形和格路径解释了组合数的起源,并介绍了偏序集的相关理论,如Sperner定理和Dilworth定理。
摘要由CSDN通过智能技术生成

C1 排列组合

S0 计数原理

1)加法原理 S = S 1 + S 2 + ⋯ + S k , S i ∩ S j = ∅ ⟹ ∣ S ∣ = ∑ i ∣ S i ∣ \mathbb{S = S_1 + S_2 + \dots + S_k, S_i \cap S_j = \varnothing \Longrightarrow |S| = \sum\limits_i |S_i|} S=S1+S2++Sk,SiSj=S=iSi

2)减法原理 U = S + A , S ∩ A = ∅ ⟹ ∣ S ∣ = ∣ U ∣ − ∣ A ∣ \mathbb{U = S+A,S\cap A = \varnothing \Longrightarrow |S| = |U| -|A|} U=S+A,SA=S=UA

3)乘法原理 ∣ A × B ∣ = ∣ A ∣ × ∣ B ∣ , A 、 B \mathbb{|A\times B | = |A|\times|B|,A、B} A×B=A×B,AB 的集合特征不应当有依赖关系

  • 技巧:
    • 约束性强的元素先分层
    • 不相邻问题:隔板法;减法(捆绑使之相邻)

4)除法原理 A \mathbb{A} A 中每 k k k 个元素具备相同特征,则 ∣ S ∣ = ∣ A ∣ / k \mathbb{|S| = |A| / k} S=A/k

S1 排列与组合

1)排列:顺序有关计数

  • n n n 元集 r r r 线性排列个数: P ( n , r ) = A n r = n ! ( n − r ) ! P(n,r)=A_n^r=\frac{n!}{(n-r)!} P(n,r)=Anr=(nr)!n!

    • 循环排列个数: P ( n , r ) / r = n ! r ( n − r ) ! P(n,r)/r = \frac{n!}{r(n-r)!} P(n,r)/r=r(nr)!n!

      圆桌 ≠ 项链:顺逆时针前者不同后者相同

    • 递推: A n k = n A n − 1 n − 1 = A n − 1 k + k A n − 1 k − 1 A_n^k = nA_{n-1}^{n-1} = A_{n-1}^k + k A_{n-1}^{k-1} Ank=nAn1n1=An1k+kAn1k1

  • 无限重 k k k 元多重集 r r r 线性排列: k r k^r kr

    循环排列 1 r ∑ d ∣ r ϕ ( r d ) k d \frac{1}{r}\sum\limits_{d|r}\phi(\frac{r}{d}) k^d r1drϕ(dr)kd

  • 有限 k k k 元多重集,重数为 n 1 , n 2 , ⋯   , n k n_1,n_2,\cdots,n_k n1,n2,,nk,线性排列数: n ! n 1 ! n 2 ! ⋯ n k ! \frac{n!}{n_1!n_2!\cdots n_k!} n1!n2!nk!n!

    • 证明:

      法一: A n n 1 A n − n 1 n 2 A n − n 1 − n 2 n 3 ⋯ A n − n 1 − ⋯ − n k − 1 n k = n ! / ∏ i n i ! A_{n}^{n_1}A_{n-n_1}^{n_2}A_{n-n_1-n_2}^{n_3}\cdots A_{n-n_1-\cdots - n_{k-1}}^{n_k}= n! /\prod_i n_i! Ann1Ann1n2Ann1n2n3Ann1n

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值