Tensorflow_v1一些用到的函数总结

本文总结了TensorFlow v1中六个常用的函数:tf.expand_dims用于拓展维度,tf.concat实现张量拼接,tf.squeeze删除单维度,tf.reduce_sum进行求和操作,tf.reshape改变张量形状,以及tf.clip_by_value限制张量值范围。这些函数在张量处理和计算中非常关键。
摘要由CSDN通过智能技术生成

1 tf.expand_dims 拓展维度

指定axis 就在axis新增1的维度
比如x是(2,3) axis=1 拓展之后变为(2,1,3)

x = tf.expand_dims(x, axis=1)

2 tf.concat 张量拼接

tf.concat([t1,t2,…tn],axis=1)
张量用[]括起来 张量在指定的axis上长度变长 其他维度长度不变 所以其他维度必须保持相同形状
当axis=-1时 代表最后一个维度
-2时 倒数第二个维度

A = tf.Variable([[1, 2, 3], [1, 2, 3]])
B = tf.Variable([[4, 5, 6], [4, 5, 6]])
C=tf.concat([A, B], 0)
D=tf.concat([A, B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值