2019-CIKM-Multi-Interest Network with Dynamic Routing for Recommendation at Tmall

MIND:淘宝推荐系统的多兴趣动态路由网络
MIND是2019年CIKM论文提出的推荐系统模型,专注于匹配阶段用户多兴趣的建模。通过动态路由层,用户历史行为被聚类成不同的兴趣表示,每个兴趣由一组向量表示,自适应地调整兴趣数量。模型在Tmall等电商数据集上进行了实验,验证了其在召回率上的优势。

Multi-Interest Network with Dynamic Routing for Recommendation at Tmall

2019 CIKM

RS分为两阶段:matching和ranking。matching阶段检索出和用户兴趣相关的候选集;ranking阶段根据用户兴趣对候选集排序。因此在每个阶段表示用户的兴趣都很重要,但是目前大多方法都用一个向量来表示用户,不能很好的捕获用户多兴趣的表示。本文提出MIND,使用编码用户不同兴趣的多个向量来表示用户。

1 引言

matching和ranking。现有的推荐算法以不同的方式建模和表示用户的兴趣。

  • CF-based用历史交互items或隐因子来表示用户
  • DL-based 用低维向量来表示用户兴趣:Youtube DNN用固定向量表示用户;DIN使用注意力机制使得面对不同的target item 得到用户不同的表示,但是其不适用于召回,计算复杂度。

本文关注于matching阶段对用户多兴趣的建模。提出了MIND,其中设计了新奇的一层——多兴趣提取层,采用动态路由自适应地整合用户历史行为的信息得到兴趣表示。动态路由可以看作soft-聚类,把用户的历史items划分成了不同的组,每一组表示一种兴趣。因此可得到用户的多种兴趣表示。

3 方法

3.1 问题描述

在这里插入图片描述

3.2 嵌入 & 池化层
  • 用户的各类特征嵌入concat
  • 物品的各类特征嵌入 平均池化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值