图的存储结构(邻接矩阵)

  1. 图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
  2. 无向图
    我们可以设置两个数组,顶点数组为vertex[4]={V0,V1,V2,V3},边数组arc[4][4]为对称矩阵(0表示不存在顶点间的边,1表示顶点间存在边)。
    对称矩阵:所谓对称矩阵就是n阶矩阵的元满足a[i][j]=a[j][i] (0<=i,j<=n)。即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的。
    有了这个二维数组组成的对称矩阵,我们就可以很容易地知道图中的信息:
    – 要判定任意两顶点是否有边无边就非常容易了;
    – 要知道某个顶点的度,其实就是这个顶点Vi在邻接矩阵中第i行(或第i列)的元素之和;
    – 求顶点Vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点。

在这里插入图片描述
3. 有向图
可见顶点数组vertex[4]={V0,V1,V2,V3},弧数组arc[4][4]也是一个矩阵,但因为是有向图,所以这个矩阵并不对称,例如由V1到V0有弧,得到arc[1][0]=1,而V0到V1没有弧,因此arc[0][1]=0。
另外有向图是有讲究的,要考虑入度和出度,顶点V1的入度为1,正好是第V1列的各数之和,顶点V1的出度为2,正好是第V1行的各数之和。
在这里插入图片描述
4. 每条边或弧带权重的图(网)
在这里插入图片描述
无穷值设为一个异常的权值即可,通过判断这个值是否异常来看边或弧是否存在。

发布了45 篇原创文章 · 获赞 0 · 访问量 4420
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览