通过Pytorch搭建网络以及初始化参数

前言:关于torch.nn

torch.nn包含了大量的函数及类,如nn.Linear(); nn.ReLU()等等,如想了解nn构造块包含了哪些函数,文档可参考:torch.nn.

一、通过nn.Module搭建模型

方式1:直接继承torch.nn.Module

nn.Modulenn模块提供了模型构造类,你可以通过继承它来搭建你自己的网络层。torch.nn.Module 这个类的内部有多达 48 个函数,这个类是 PyTorch 中所有 neural network module的基类,可以通过继承nn.Module来完成自己的网络搭建,文档可参考:torch.nn.Module; 知乎

nn.Module中的函数forward()__init__()需要通过子类来实现,不然就会报错,__init__()主要作用是定义基础的网络层,forward()则是实现各层网络的连接,由于nn.Module模块中自带了__call__()函数,所以当项搭建好后的网络传递数据的时候,forward()函数会自动运行;

一个简单的例子:

import torch
from torch import nn

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.hidden = nn.Linear(784, 256)
        self.act = nn.ReLU()
        self.output = nn.Linear(256, 10)
    
    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)
        
X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)
方式2:通过nn.Module.add_module添加网络层

上一个例子是将各网络层添加到__init__()中来搭建网络,nn.Module父类中自带了函数add_module(),可以通过调用该函数,来添加网络层;添加完的网络层都存放在self._modules中,这里请注意forward()函数的写法:

"""
    函数功能:构建一个容器,用于存放模块
    语法笔记:
        1.与python自带的字典相比较,OrderedDict表示有序的字典;
        2.enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标;
"""
from collections import OrderedDict

class MySequential(nn.Module):

    def __init__(self, *args):
        super(MySequential, self).__init__()
        
        # 如果传入的是一个有序的字典
        # isinstance(args[0], OrderdDict)判断args[0]的类型是不是有序字典
        if len(args) == 1 and isinstance(args[0], OrderdDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        # 否则遍历的方式读取
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
        
    def forward(self, input):
        for module in self._modules.values():
            # 每层网络输入后,都会返回一个输出
            # 当前层的输出作为下一层的输入
            input = module(input)
        return input

下面两种方式的输出结果一致

X = torch.rand(2, 784)
# 通过传有序的字典
Dict = OrderedDict([
    ('0', nn.Linear(784, 256)), 
    ('1', nn.ReLU()), 
    ('2', nn.Linear(256, 10))
])
net1 = MySequential(Dict)
print(net1)
net1(X)

print('----------------------------------------')
# 通过传可迭代的对象
net2 = MySequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print(net2)
net2(X)
方式3:通过nn.Sequential有顺序添加网络层

nn.Sequential作为容易也是用于存放网络层,但要求是按照顺序进行排列的,所以必须确保上一层的输出与下一层的输入的size保持一致,实例如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
class net_seq(nn.Module):
    def __init__(self):
        super(net2, self).__init__()
        self.seq = nn.Sequential(
                        nn.Conv2d(1,20,5),
                        nn.ReLU(),
                        nn.Conv2d(20,64,5),
                        nn.ReLU()
                        )      
    def forward(self, x):
        return self.seq(x)
    
net = net_seq()
print(net)

也可以通过OrderedDict来指定每个module的名字:

from collections import OrderedDict

class net_seq(nn.Module):
    def __init__(self):
        super(net_seq, self).__init__()
        self.seq = nn.Sequential(OrderedDict([
                            ('conv1', nn.Conv2d(1,20,5)),
                            ('relu1', nn.ReLU()),
                            ('conv2', nn.Conv2d(20,64,5)),
                            ('relu2', nn.ReLU())
                            ]))
    def forward(self, x):
        return self.seq(x)
    
net = net_se:q()
print(net)
方式4:通过nn.ModuleList搭建网络

ModuleList接收一个子模块的列表作为输入,也可以进行appendextend操作;

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作

print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError
  • ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序;

  • ModuleList没有实现forward功能,如果对net进行输入操作会报错;意思就是你需要自己将各层网络连接起来,相比较于sequential更有定制性;

  • ModuleList相比较于python的list会自动添加网络的参数parameters

nn.Sequential与nn.ModuleList的区别
  • nn.Sequential实现了forward函数,可以见上面的例子。ModuleList需要在类的内部自己实现forward函数;

    def forward(self, x):
        for m in self.modlist:
            x = m(x)
            return x
    

    如果完全使用nn.Sequential是可以的,只是会失去部分灵活性,不可进行定制了;

  • nn.Sequential可以使用OrderedDict进行命名;

  • 有时候网络中会有许多相似或者重复的层,这时会考虑通过for循环来创建它们,而不是一行一行地写;

    linears = [nn.Linear(10, 10) for i in range(5)]
    

    但是问题是,这样创建出来的层它们之间的参数是一样的。

参见:知乎

方式5:通过ModuleDict搭建网络

目前感觉ModuleDictModuleList的区别是它可以自己命名网络层的名字而已;

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError
其他补充
  • 如果某层的某个参数的requires_gradFalse,则该层的这个参数不会被更新;
  • torch.nn.ReLU()torch.nn.functional.relu()本质上没什么区别;源代码显示,nn.ReLU()是通过调用nn.functional.relu()来实现的;

二、模型参数的初始化

2.1 添加参数

方式1:model.state_dict()

model.state_dict()返回的是一个有序的字典,分别对应参数的名称及具体参数;

# 如果一个网络各层已经定义好了参数,可以通过遍历的方式来访问它;
for params, value in net.state_dict().items(): 
    print(f'params:{params} \n value.size:{value.size()}')
    
    
输出如下:
params:conv1.weight 
 value.size:torch.Size([32, 3, 3, 3])
params:conv1.bias 
 value.size:torch.Size([32])
params:conv2.weight 
 value.size:torch.Size([32, 3, 3, 3])
params:conv2.bias 
 value.size:torch.Size([32])
params:dense1.weight 
 value.size:torch.Size([128, 288])
params:dense1.bias 
 value.size:torch.Size([128])
params:dense2.weight 
 value.size:torch.Size([10, 128])
params:dense2.bias 
 value.size:torch.Size([10])
方式2:model.named_parameters

model.named_parameters除了返回参数Tensor外,还会返回对应的名字;它与前面提到的model.state_dict()不同的是,它是一个迭代器。

print(type(net.named_parameters()))
for name, param in net.named_parameters():
    print(name, param.size())
    
输出如下:
<class 'generator'>
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])
方式3:model.parameters()

先说功能,model.parameters()是一个迭代器,但是只能返回参数的值,不可返回名字;准确来说,model.parameters()是通过model.named_parameters来实现的,定义如下:

def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
    r"""Returns an iterator over module parameters.

        This is typically passed to an optimizer.

        Args:
            recurse (bool): if True, then yields parameters of this module
                and all submodules. Otherwise, yields only parameters that
                are direct members of this module.

        Yields:
            Parameter: module parameter

        Example::

            >>> for param in model.parameters():
            >>>     print(type(param), param.size())
            <class 'torch.Tensor'> (20L,)
            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

        """
    for name, param in self.named_parameters(recurse=recurse):
        yield param

2.2 初始化模型的参数

pytorchnn.init提供了多种预设的初始化方式,可以访问:nn.init;下面以将权重参数以均值为0,标准差为0.01的正态分布来设置:

for name, param in net.named_parameters():
    if 'weight' in name:
        init.normal_(param, mean=0, std=0.01)
        print(name, param.data)

使用常数填充nn.init.constant_(tensor, val)

w = torch.empty(3, 5)
nn.init.constant_(w, 0.3)
  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是一个开源的深度学习框架,可以用于搭建深度网络。下面是使用PyTorch搭建深度网络的一般步骤: 1. 导入必要的库和模块:首先,我们需要导入PyTorch库和模块,包括torch、torch.nn和torch.optim。 2. 创建网络模型:使用torch.nn模块定义一个自定义的网络模型类,在这个类中定义网络的结构,包括网络层、激活函数和其他运算。 3. 初始化网络模型:实例化上一步中定义的网络模型类,得到网络模型的对象。 4. 定义损失函数:根据任务的特点选择适当的损失函数,例如分类任务可以使用交叉熵损失函数。 5. 定义优化器:选择合适的优化算法,例如随机梯度下降(SGD)或者Adam优化器等。 6. 训练网络:使用训练数据集对网络模型进行训练。循环遍历训练数据集,将输入数据输入网络模型,得到输出,并与标签进行比较计算损失,然后使用反向传播将损失传递给网络模型,优化模型参数。 7. 测试网络:使用测试数据集对训练好的网络模型进行性能评估。输入测试数据集到网络模型中,得到输出,并与标签进行比较,评估模型的准确率或其他性能指标。 8. 保存和加载模型:可以将训练好的模型保存到文件中,以便后续使用。也可以从文件中加载已经训练好的模型。 以上是使用PyTorch搭建深度网络的基本步骤。在实际应用中,还可以根据具体情况对网络模型进行调参、使用数据增强技术提高模型性能等。通过灵活运用PyTorch的强大功能,可以快速搭建深度网络,并进行训练和评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值