VIF系数

这里简单介绍一下VIF系数的作用,具体的我也未了解。

问题:假如,我们要用 x 1 , x 2 x_1,x_2 x1x2去拟合函数 y y y。同时, x 1 , x 2 x_1,x_2 x1x2之间相关性很强,如 x 1 = 2 x 2 x_1=2x_2 x1=2x2
假如得到的拟合函数为: y = 3 x 1 − x 2 y=3x_1-x_2 y=3x1x2
从拟合的结果看来,自变量 x 2 x_2 x2和因变量 y y y之间是负相关关系;
可实际上如果换算,有 y = 5 x 2 y=5x_2 y=5x2,是正相关关系;
这说明变量 x 2 x_2 x2与其余自变量之间存在严重的多重共线性。

通过VIF系数,可以检查出变量与其他变量之间的线性关系,如果某变量的VIF系数越大,意味着它与其他特征的线性相关性越大,可以进行丢弃;

关键代码:

import pandas as pd
from statsmodels.stats.outliers_influence import variance_inflation_factor

data_df = pd.read_csv(...)
data_vif = pd.DataFrame(index=data_df.columns)
data_vif['vif'] = [variance_inflation_factor(data_df.values, i) for i in range(data_df.shape[1])]

一般而言,当变量的VIF系数大于10时,说明其与其它变量存在严重的多重共线性,就要考虑进行丢弃了。
当自变量的容忍度大于0.1,方差膨胀系数小于10的范围是可以接受的,表明自变量之间没有共线性问题存在 。

简单解释VIF指数以及代码演示用法:
用 VIF 方法消除多维数据中的多重共线性
利用statsmodels计算VIF和相关系数消除共线性

用数学理论来解释的相关链接:
如何理解方差膨胀因子(Variance Inflation Factor,VIF)?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值