1. 将字典保存为.txt格式
# 保存数据
# file_path为路径
# data_dict为字典
with open(file_path, 'w') as f:
f.write(str(data_dict))
f.close()
# 读取数据
with open(file_path, 'r') as f:
data_dict = f.read()
# 将字符转换为dict格式
data_dict = eval(data_dict)
# 如果字典格式为:collections.defaultdict()格式
# data_dict = eval(data_dict [28:-1])
f.close()
2. 保存为.pkl
2.1 Pandas文件保存
主要适用于Pandas中,格式为DataFrame、Series
类数据。
# df_data为DataFrame或Series格式数据
# 文件保存
df_data.to_pickle(file_path)
# 文件读取
df_data.read_pickle(file_path)
2.2 通过pickle模块
import pickle
# 文件保存
# 二进制(b)写入(w)
with open(file_path, 'wb') as f:
pickle.dump(data, f)
# 文件读取
# 二进制(b)读取(b)
with open(file_path, 'rb') as f:
data = pickle.load(fp)
关于open
函数中参数的用法,可以参考链接:Python中Open函数用法
从参数用法的解释中,参数b
似乎适用于非文本类文件,如图片音频。
3. 保存为.csv文件
3.1 通过Pandas保存
主要适用于Pandas中,格式为DataFrame、Series
类数据。
# df_data为DataFrame或Series格式数据
# 文件保存
# 如果要去掉columns(header=0)
# 如果要去掉index(index=False)
df_data.to_csv(file_path, index=False, header=False)
# 文件读取
df_data.read_scv(file_path)
pandas.DataFrame.to_csv官方链接
pandas.Series.to_csv官方链接
pandas.read_csv官方链接