hdu4417

6 篇文章 0 订阅
1 篇文章 0 订阅

离线算法:
算法设计策略都是基于在执行算法前输入数据已知的基本假设,也就是说,对于一个离线算法,在开始时就需要知道问题的所有输入数据,而且在解决一个问题后就要立即输出结果,通常将这类具有问题完全信息前提下设计出的算法成为离线算法( off line algorithms)

#include <iostream>
//先排序,这样很多东西不用重复计算了,也就是用离线算法
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define N 100010
using namespace std;
int n,m;
int cnt[N*4],ans[N];
struct node
{
    int h;
    int pos;
    bool operator < (const node n)const
    {
        return h<n.h;
    }
}a[N];
struct section
{
    int l,r,h,p;
    bool operator < (const section s)const
    {
        return h<s.h;
    }
}b[N];
void update(int p,int l,int r,int rt)
{
    if(l==r)
    {
        cnt[rt]++;
        return ;
    }
    int mid=(r+l)/2;

    if(p>mid) update(p,mid+1,r,rt*2+1);
    else update(p,l,mid,rt*2);
    cnt[rt]=cnt[rt*2]+cnt[rt*2+1];
}
int query(int L,int R,int l,int r,int rt)
{
    if(L<=l && r<=R)
    {
        return cnt[rt];
    }
    int mid=(r+l)/2;
    if(L>mid) return query(L,R,mid+1,r,rt*2+1);//这里rt写成了r!找了好久
    else if(R<=mid) return query(L,R,l,mid,rt*2);
    else return query(L,R,l,mid,rt*2)+query(L,R,mid+1,r,rt*2+1);
}
int main()
{
    int t;cin>>t;
    for(int k=1;k<=t;k++)
    {
        memset(cnt,0,sizeof cnt);
        printf("Case %d:\n",k);
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i].h);
            a[i].pos=i;
        }
        sort(a+1,a+n+1);
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&b[i].l,&b[i].r,&b[i].h);
            b[i].p=i;
        }

        sort(b+1,b+m+1);
        int j;
        for(int i=1,j=1;i<=m;i++)//想想为什么j不在内层for里面=1?
        {
           for(;j<=n && a[j].h<=b[i].h;j++)
            {
                update(a[j].pos,1,n,1);
            }
            ans[b[i].p]=query(b[i].l+1,b[i].r+1,1,n,1);
        }
        for(int i=1;i<=m;i++)
            printf("%d\n",ans[i]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值