GBDT (与RF,GBDT、XGBoost、lightgbm的区别)

GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是**Boosting**的思想。(随机森岭用的是Bagging的思想,关于Bagging和随机森林可以看我的主页里的另外两篇博客Bagging_一枚小可爱c的博客-CSDN博客随机森林_一枚小可爱c的博客-CSDN博客_breiman随机森林

(GBDT拟合的不是残差,而是负梯度。只是当损失函数为平方损失的时候,负梯度正好为残差。)

Boosting思想

Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。

Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。

GBDT的思想

GBDT的原理很简单,就是所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差(这个残差就是预测值与真实值之间的误差)。当然了,它里面的弱分类器的表现形式就是各棵树。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值