GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是**Boosting**的思想。(随机森岭用的是Bagging的思想,关于Bagging和随机森林可以看我的主页里的另外两篇博客Bagging_一枚小可爱c的博客-CSDN博客,随机森林_一枚小可爱c的博客-CSDN博客_breiman随机森林)
(GBDT拟合的不是残差,而是负梯度。只是当损失函数为平方损失的时候,负梯度正好为残差。)
Boosting思想
Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。
Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。
GBDT的思想
GBDT的原理很简单,就是所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差(这个残差就是预测值与真实值之间的误差)。当然了,它里面的弱分类器的表现形式就是各棵树。