剑指offer 46、47、48

46、圆圈中最后剩下的数

在这里插入图片描述
解法1:找规律。首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。在这n个数字中,第一个被删除的数字是(m-1)%n,为简单起见记为k。那么删除k之后的剩下n-1的数字为0,1,…,k-1,k+1,…,n-1,并且下一个开始计数的数字是k+1。相当于在剩下的序列中,k+1排到最前面,从而形成序列k+1,…,n-1,0,…k-1。该序列最后剩下的数字也应该是关于n和m的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0开始的连续序列),因此该函数不同于前面函数,记为f’(n-1,m)。最初序列最后剩下的数字f(n,m)一定是剩下序列的最后剩下数字f’(n-1,m),所以f(n,m)=f’(n-1,m)。接下来我们把剩下的的这n-1个数字的序列k+1,…,n-1,0,…k-1作一个映射,映射的结果是形成一个从0到n-2的序列:
k+1 -> 0
k+2 -> 1

n-1 -> n-k-2
0 -> n-k-1

k-1 -> n-2

把映射定义为p,则p(x)= (x-k-1)%n,即如果映射前的数字是x,则映射后的数字是(x-k-1)%n。对应的逆映射是p-1(x)=(x+k+1)%n。由于映射之后的序列和最初的序列有同样的形式,都是从0开始的连续序列,因此仍然可以用函数f来表示,记为f(n-1,m)。根据我们的映射规则,映射之前的序列最后剩下的数字f’(n-1,m)= p-1 [f(n-1,m)]=[f(n-1,m)+k+1]%n。把k=m%n-1代入得到f(n,m)=f’(n-1,m)=[f(n-1,m)+m]%n。

经过上面复杂的分析,我们终于找到一个递归的公式。要得到n个数字的序列的最后剩下的数字,只需要得到n-1个数字的序列的最后剩下的数字,并可以依此类推。当n=1时,也就是序列中开始只有一个数字0,那么很显然最后剩下的数字就是0。我们把这种关系表示为:
递归公式为:
在这里插入图片描述

尽管得到这个公式的分析过程非常复杂,但它用递归或者循环都很容易实现。最重要的是,这是一种时间复杂度为O(n),空间复杂度为O(1)的方法,因此无论在时间上还是空间上都优于前面的思路。

# -*- coding:utf-8 -*-
class Solution:
    def LastRemaining_Solution(self, n, m):
        # write code here
        if n == 0:
            return -1
        s = 0
        for i in range(2, n+1):
            s = (s+m) % i
        return s

47、求1+2+3+…+n

在这里插入图片描述
看清前提:
所以可以用递归
,要注意python中逻辑运算符的用法,a and b,a为False,返回a,a为True,就返回b
a = 0 , b = 1 , 所以 a and b 就变成了 0 and 1 (False and True),所以为 0 (False)。

# -*- coding:utf-8 -*-
class Solution:
    def Sum_Solution(self, n):
        # write code here
        res = n
        temp = n and self.Sum_Solution(n-1)
        res = res+temp
        return res
        # 递归后:n + n-1 + n-2 +...+ 1

48、不用加减乘除做加法

在这里插入图片描述
思路:
由于题目要求不能使用四则运算,那么就需要考虑使用位运算
两个数相加可以看成两个数的每个位先相加,但不进位,然后在加上进位的数值
如12+8可以看成1+0=1 2+8=0,由于2+8有进位,所以结果就是10+10=20
二进制中可以表示为1000+1100 先每个位置相加不进位,
则0+0=0 0+1=1 1+0=1 1+1=0这个就是按位异或运算
对于1+1出现进位,我们可以使用按位与运算然后在将结果左移一位
最后将上面两步的结果相加,相加的时候依然要考虑进位的情况,直到不产生进位
注意python没有无符号右移操作,所以需要越界检查
按位与运算:相同位的两个数字都为1,则为1;若有一个不为1,则为0。
按位异或运算:相同位不同则为1,相同则为0。
在这里插入图片描述
在这里插入图片描述

# -*- coding:utf-8 -*-
class Solution:
    def Add(self, num1, num2):
        # write code here
        num1 = num1 & 0xffffffff
        num2 = num2 & 0xffffffff
        while num2:
            # 异或
            temp = (num1^num2)&0xffffffff
            # 与
            num2 = ((num1&num2)<<1)&0xffffffff
            num1 = temp
        if num1 <= 0x7fffffff:
            return num1
        else:
            return ~(num1 ^ 0xffffffff)
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页