LR,SVM,决策树的对比

本文详细比较了逻辑回归、决策树和支持向量机在分类任务中的应用。逻辑回归适用于线性可分问题,决策树通过划分矩形区域处理非线性边界,而SVM通过映射到高维空间实现非线性分类。在选择算法时,通常先尝试逻辑回归,然后是决策树(如随机森林),最后在资源充足时考虑SVM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,LR、SVM、决策树都可以用来做分类的任务。为了做分类,我们试图寻找决策边界线或是一条曲线(不必是直线),在特征空间里区分两个类别。

一、LR,SVM,决策树直观区别

举个例子:
有一个样本,它包含三个变量:x1, x2和target。target有0和1两种值,取决于预测变量x1和x2的值。将数据绘制在坐标轴上。
在这里插入图片描述
这就是特征空间,观测值分布于其中。这里因为我们只有两个预测变量/特征,所有特征空间是二维的。你会发现两个类别的样本用不同颜色的点做了标记。我希望我们的算法能计算出一条直线/曲线来分离这个类别。

通过目测可知,理想的决策边界(分割曲线)是一个圆。实际决策边界形状的差异则是由于逻辑回归、决策树和支持向量机算法的差异引起的。

逻辑回归的决策边界总是一条直线(或者一个平面,在更高维度上是超平面)。我们样本数据用逻辑回归得到的结果将会是这样。在这里插入图片描述
你会发现效果并不好。因为无论你怎么做,逻辑回归方法得到的决策边界总是线性的,并不能得到这里需要的环状边界。因此,逻辑回归适用于处理接近线性可分的分类问题。(虽然可以对变量做变换得到线性可分的结果,但我们在此不讨论这类情况。)

接着我们来看决策树如何处理这类问题。我们都知道决策树是按照层次结构的规则生成的。以我们的数据为例。
在这里插入图片描述
如果你仔细思考,这些决策规则x2 || const OR x1 || const 只是用平行于轴线的直线将特征空间切分,如下图所示。
在这里插入图片描述
我们可以通过增加树的大小使它生长得更复杂,用越来越多的分区来模拟环状边界。
在这里插入图片描述
如果你继续增加树的尺寸,你会注意到决策边界会不断地用平行线围成一个环状区域。因此,如果边界是非线性的,并且能通过不断将特征空间切分为矩形来模拟,那么决策树是比逻辑回归更好的选择。

再来看看SVM的结果。SVM通过把你的特征空间映射到核空间,使得各个类别线性可分。这个过程更简单的解释就是SVM给特征空间又额外增加了一个维度,使得类别线性可分。这个决策边界映射回原特征空间后得到的是非线性决策边界。下图比我的解释更清楚。
在这里插入图片描述
你可以看到,一旦样本数据以某种方式增加了一个维度,我们就能用一个平面来分割数据(线性分类器),这个平面映射回原来的二维特征空间,就能得到一个环状的决策边界。
在这里插入图片描述
现在清楚各种区别了吧,但是还有一个问题。也就是说,在处理多维数据时,什么时候该选择何种算法?这个问题很重要,因为若是数据维度大于三,你就找不到简单的方法来可视化地呈现数据。往下看。

二、分析本身三者的优缺点

首先,我们来分析下逻辑回归(Logistic Regression),它是解决工业规模问题最流行的算法,尽管与其他技术相比,其在效率和算法实现的易用性方面并不出众。

1、逻辑回归

逻辑回归非常便利并且很有用的一点在于,可以通过控制阈值来控制分类的结果。

逻辑回归的优点:

  • 1、便利的观测样本概率分数;
    2、已有工具的高效实现;
    3、对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决;
    4、逻辑回归广泛的应用于工业问题上(这一点很重要)。

逻辑回归的缺点:

  • 1、当特征空间很大时,逻辑回归的性能不是很好;
    2、不能很好地处理大量多类特征或变量;
    3、对于非线性特征,需要进行转换;
    4、依赖于全部的数据(个人觉得这并不是一个很严重的缺点)。

2、决策树

决策树的优点:

  • 1、直观的决策规则
    2、可以处理非线性特征
    3、考虑了变量之间的相互作用

决策树的缺点:

  • 1、训练集上的效果高度优于测试集,即过拟合[随机森林克服了此缺点
    2、没有将排名分数作为直接结果

3、SVM

SVM的优点:

  • 能够处理大型特征空间
    能够处理非线性特征之间的相互作用
    无需依赖整个数据

SVM的缺点:

  • 当观测样本很多时,效率并不是很高
    有时候很难找到一个合适的核函数

三、如何选择这三种算法?

1、首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考;
2、然后试试决策树(随机森林)是否可以大幅度提升模型性能。即使你并没有把它当做最终模型,你也可以使用随机森林来移除噪声变量
3、如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值