参数名 | 推荐值 | 简介 | 定义 |
---|---|---|---|
temperature | 0.95 | 控制生成内容的随机性,值越大越随机,多样性越好 | 这个参数控制着生成的随机性。较高的温度值(如 1.2)会增加文本的多样性和创造性,但可能会牺牲一些准确性或连贯性。具体地,temperature 会调整概率输出的softmax概率分布,如果 temperature 的值为1,则没有任何调整;如果其值比1大,则会生成更加随机的文本;如果其值比1小,则生成的文本更加保守。 |
top_p | 0.95 | 单步累计采用阈值,越大越多token会被考虑 | 如果累计概率已经超过0.95,剩下的token不会被考虑例如有下面的token及其概率,a:0.9,b:0.03,c:0.03,d:0.015,e… 。则只会采用用abc,因为已经是0.96超过了0.95 |
top_k | 50 | 单步采用token的数量,越大采用token会越多 | 单步中最多考虑的token数量 |
max_length | 512 | 最大采样长度 | 模型生成的文本最大长度,超过的话会做截断,512是参考值,这个依赖于实际情况自己设置 |
num_beams | 1 | beam搜索数量,越大文本质量越高 | 想象一棵树,这个树在每一层的叶子节点数量都是num_beams个,正常模型推理时设置成1就行啦;num_beams=20 表示在每一步时,模型会保留20个最有可能的候选序列,保留方式是累计概率乘积。这有助于生成更加精确和高质量的文本。 |
do_sample | False | 是否概率采样token得到结果 | 当设置为 False 时,模型在生成文本时不会随机采样,而是选择最可能的下一个词。这使得生成的文本更加确定和一致。 |
num_beam_groups | 1 | 分成num_beam_groups组进行搜索 | 这个参数与束搜索相关。它将搜索的束分为不同的组,每个组内部进行搜索。这可以增加文本的多样性。num_beam_groups包含num_beams |
num_return_sequences | 1 | 有多少条返回的结果 | 推理的话设成1就好了 |
output_scores | True | 调试实验时用到 | 设为True时模型在生成文本的每一步都会输出每个词的分数(或概率),这有助于了解模型是如何在不同选项中做出选择的。 |
repetition_penalty | 1 | 重复惩罚值,越大越不会生成重复token | 默认值为1.0,其中较高的值意味着更强的惩罚,生成的文本中将出现更少的重复。如果取值为0,则没有惩罚,生成的文本可能包含大量重复的内容。 |
max_new_tokens | 256 | 模型生成的最大新词数 | 在这里设置为256,意味着每次生成的文本最多包含256个新词。 |
diversity_penalty | 1.5 | 当使用多束搜索时,这个参数惩罚那些在不同束中过于相似的词,以提高生成文本的多样性。 | 设置为1.5意味着对相似性施加较大的惩罚。如果在同一个step中某个beam生成的词和其他beam有相同的,那么就减去这个值作为惩罚,仅在 num_beam_groups 启用时这个值才有效 |
length_penalty | 1 | beam search分数会受到生成序列长度的惩罚 | length_penalty=0.0:无惩罚、length_penalty<0.0:鼓励模型生成长句子、length_penalty>0.0:鼓励模型生成短句子 |
eos_token_id | - | 指定搜索时的结束token | 有时可以提升模型性能,例如同时指定和为结束符可以让模型在出现时也结束,防止模型停不下来 |
bad_words_ids | - | 禁止生成的token | 帮助解决伦理安全、种族歧视等问题 |
prefix_allowed_tokens_fn | - | 约束模型只能在给定的tokens里生成token | 帮助特定功能的模型提升性能 |
请注意,“-” 表示该参数没有推荐值,需要根据具体的应用场景来设置。 |
辅助理解案例:
贪婪搜索:当 num_beams=1 而且 do_sample=False 时,,每个step生成条件概率最高的词,因此生成单条文本。代码中,调用 greedy_search()方法
随机贪婪搜索:当 num_beams=1 且 do_sample=True 时,每个单步时会根据模型输出的概率进行采用,而不是选条件概率最高的词,增加多样性。调用 sample() 方法
贪婪柱搜索:当 num_beams>1 且 do_sample=False 时,做一个 num_beams的柱搜索,每次都是贪婪选择top N个柱。调用 beam_search() 方法
采样柱搜索:当 num_beams>1 且 do_sample=True 时,相当于每次不再是贪婪选择top N个柱,而是加了一些采样。调用 beam_sample() 方法
多组柱搜索搜索:当 num_beams>1 且 num_beam_groups>1 时,多组柱搜索同时进行,最后返回num_beam_groups个结果。调用 group_beam_search() 方法
temperature 进一步的描述
将温度(temperature)设置为1并不会导致每次输出完全不变。温度参数控制的是生成文本的随机性和多样性:
温度为0:模型会变得非常确定性,总是选择概率最高的词,输出会趋于一致,每次生成的内容几乎相同。
温度为1:模型会在选择词时保持一定的随机性,生成的文本会有适度的多样性。虽然输出可能会有一定的变化,但整体内容和主题会保持一致。
因此,如果你希望生成的内容在每次对话中保持一致但又有一些自然的变化,温度设置为1是一个不错的选择。如果你希望输出完全不变,可以考虑将温度设置接近于0。