使用Sklearn库学习数据预处理和特征工程

目录

1,概述

1.1,数据预处理和特征工程

1.2,sklearn中的数据预处理和特征工程

2,数据预处理 Preprocessing & Impute

2.1,数据无量纲化

2.2,缺失值处理

2.3,处理分类型特征:编码与哑变量

2.4,处理连续型特征:二值化与分段

3,特征选择 feature_selection

3.1,Filter过滤法

3.1.1,方差过滤VarianceThreshold

3.1.2,方差过滤对模型的影响

3.1.2,选取超参数threshold

3.2,相关性过滤

3.2.1,卡方过滤

3.2.2,选取超参数K

3.2.3,F检验

3.2.4,互信息法

3.2.5,过滤法总结

3.2,Embedded嵌入法

3.3,Wrapper包装法


1,概述

1.1,数据预处理和特征工程

1获取数据
2:数据预处理数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程
可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断。也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小
数据预处理的目的:让数据适应模型,匹配模型的需求
3:特征工程特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法的方式实现。
可能面对的问题有:特征之间有相关性,特征和标签无关,特征太多或太小,或者干脆就无法表现出应有的数据现象或无法展示数据的真实面貌
特征工程的目的:1) 降低计算成本,2) 提升模型上限
4:建模测试模型并预测出结果
5:上线验证模型效果

1.2,sklearn中的数据预处理和特征工程

  • 模块preprocessing:几乎包含数据预处理的所有内容
  • 模块Impute:填补缺失值专用
  • 模块feature_selection:包含特征选择的各种方法的实践
  • 模块decomposition:包含降维算法

2,数据预处理 Preprocessing & Impute

2.1,数据无量纲化

在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;而在距离类模型,譬如K近邻,K-Means聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好。)

数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化(Zero-centered或者Meansubtraction)处理和缩放处理(Scale)中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理。

  • preprocessing.MinMaxScaler(数据归一化)

当数据(x)按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到[0,1]之间,而这个过程,就叫做数据归一化(Normalization,又称Min-Max Scaling)。注意,Normalization是归一化,不是正则化,真正的正则化是regularization,不是数据预处理的一种手段。归一化之后的数据服从正态分布,公式如下:

在sklearn当中,我们使用preprocessing.MinMaxScaler来实现这个功能。MinMaxScaler有一个重要参数,feature_range,控制我们希望把数据压缩到的范围,默认是[0,1]。

from sklearn.preprocessing import MinMaxScaler
import pandas as pd
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
#不太熟悉numpy的小伙伴,能够判断data的结构吗?
#如果换成表是什么样子?
pd.DataFrame(data)

#实现归一化,如果不写归一化的范围,默认是归一化到0-1之间
scaler = MinMaxScaler(feature_range=[5,10]) #实例化,也可以添加参数feature_range选择归一化的范围
scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x)
result = scaler.transform(data) #通过接口导出结果
result

# 也可以实现一步处理
result1=scaler.fit_transform(data)# fit_transform可以一步实现fit()和transform()的功能
result1

#当X中的特征数量非常多的时候,fit会报错并表示,数据量太大了我计算不了
#此时使用partial_fit作为训练接口,使用归一化对象调用方法
scaler = scaler.partial_fit(data)# 和fit()一样的使用方法

# 使用接口导出数据
scaler.transform(data) 

# 将归一化后的数据重新逆转,也就是归一化的结果逆转为原始数据
scaler.inverse_transform(result)

我们也可以使用numpy自己实现归一化处理

# 使用numpy进行归一化处理
import numpy as np
data =np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]]) 
# x-最小值/极差
# 进行归一化处理
xor=(data-data.min(axis=0))/(data.max(axis=0)-data.min(axis=0))
xor
data.max(axis=1)# 获取每一行的最大值,axis=1标示行,axis=0标示列
  • preprocessing.StandardScaler(标准化)

当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),而这个过程,就叫做数据标准化(Standardization,又称Z-score normalization),公式如下:

# 数据标准化,也就是服从正态分布
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
# 实例化
scaler=StandardScaler()
# 使用fit生成均值和方差
scaler.fit(data)# 本质是生成均值和方差
# 默认是按照列进行求均值和方差

# 查看均值属性mean_
scaler.mean_

# 查看方差属性var_
scaler.var_

x_std=scaler.transform(data)
x_std# 这一组数据是经过标准化后的数据
# 使用接口导出我们的结果
# 现在的数据服从均值为0,标准差为1的分布

# 现在查看均值
x_std.mean()# 0.0

# 查看方差
x_std.var()# 1.0

# 使用inverse_transform()返回原本的数据
scaler.inverse_transform(x_std)
# 对于缺失值,归一化和标准化时,不会考虑缺失值,会保持nan显示

对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值,在fit的时候忽略,在transform的时候保持缺失NaN的状态显示。并且,尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。

  • StandardScaler和MinMaxScaler选哪个?

大多数机器学习算法中,会选择StandardScaler来进行特征缩放,因为MinMaxScaler对异常值非常敏感。在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择。

MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中,建议先试试看StandardScaler,效果不好换MinMaxScaler。

除了StandardScaler和MinMaxScaler之外,sklearn中也提供了各种其他缩放处理(中心化只需要一个pandas广播一下减去某个数就好了,因此sklearn不提供任何中心化功能)。比如,在希望压缩数据,却不影响数据的稀疏性时(不影响矩阵中取值为0的个数时),我们会使用MaxAbsScaler;在异常值多,噪声非常大时,我们可能会选用分位数来无量纲化,此时使用RobustScaler。更

2.2,缺失值处理

机器学习和数据挖掘中所使用的数据,永远不可能是完美的。很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况。因此,数据预处理中非常重要的一项就是处理缺失值。

# 数据的缺失处理
import pandas as pd
# index_col标示告诉第一列是索引列
data=pd.read_csv(r'H:\sklearn\菜菜的sklearn课堂课件\03数据预处理和特征工程\Narrativedata.csv',index_col=0)
data
# 在这一组数据中survived是标签,其余的全部是特征

在这里,我们使用从泰坦尼克号提取出来的数据,这个数据有三个特征,一个数值型,两个字符型,标签也是字符型。

  • impute.SimpleImputer
class sklearn.impute.SimpleImputer (missing_values=nan, strategy=’mean’, fill_value=None, verbose=0,copy=True)
  • 参数说明
参数含义
missing_values告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan
strategy我们填补缺失值的策略,默认均值
输入“mean”使用均值填补(仅对数值型特征可用)
输入“median"用中值填补(仅对数值型特征可用)
输入"most_frequent”用众数填补(对数值型和字符型特征都可用)
输入“constant"表示请参考参数“fill_value"中的值(对数值型和字符型特征都可用)
fill_value当参数startegy为”constant"的时候可用,可输入字符串或数字表示要填充的值,常用0
copy默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去。
  • 数据填充
# loc标示使用索引的名字进行切片
# 返回的是一个series对象
# 使用values取出series里面的值
# 现在的数据是一维的,无法导入模型进行fit训练,所以要转换为高维的数据
# 使用reshape([-1,1])进行升维度
# 当数据是一维的时候,不分行或者列,但是数据二维时,第一个数字是行,第二个是列
Age=data.loc[:,'Age'].values.reshape([-1,1])#.shape# (891, 1)
Age.shape

# 现在对age列进行填充
from sklearn.impute import SimpleImputer 
# 对模型进行实例化,默认使用均值填充
imp_mean=SimpleImputer()# 使用均值进行填充,默认就是用均值进行填充
imp_median=SimpleImputer(strategy='median')# 使用中位数填充
imp_0=SimpleImputer(strategy='constant',fill_value=0)# 使用0进行填充

# 使用fit.transform进行数据的填充并且返回我们的结果
imp_mean=imp_mean.fit_transform(Age)
imp_median=imp_median.fit_transform(Age)
imp_0=imp_0.fit_transform(Age)

# 使用中位数对原始数据进行填充
data.loc[:,'Age']=imp_median
data.info()

# 现在填充Embarked  
Embarked=data.loc[:,'Embarked'].values.reshape(-1,1)
# 现在使用众数进行填充
imp_mode=SimpleImputer(strategy='most_frequent')
data.loc[:,'Embarked']=imp_mode.fit_transform(Embarked)
data.info()
  • 我们也可以使用numpy和pandas进行填充
import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3
Preprocessing\Narrativedata.csv",index_col=0)
data.head()
data.loc[:,"Age"] = data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna 在DataFrame里面直接进行填补
data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

# 使用.fillna()直接可以再DataFrame中填充数据
# 对于缺失记录很少的情况,我们可以直接删除缺失的记录
data_.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

2.3,处理分类型特征:编码与哑变量

在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型)。然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的。比如说,学历的取值可以是["小学",“初中”,“高中”,"大学"],付费方式可能包含["支付宝",“现金”,“微信”]等等。在这种情况下,为了让数据适应算法和库,我们必须将数据进行编码,即是说,将文字型数据转换为数值型。

  • preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值
from sklearn.preprocessing import LabelEncoder
# iloc()是使用数字索引切片,-1标示选取最后一列标签
# 要输入的是标签,而不是特征矩阵,所以允许是一维的
y=data.iloc[:,-1]

# 实例化一个编码器,下面是处理分类型变量
lab=LabelEncoder()
# 导入数据进行训练
lab=lab.fit(y)# 这里可以是一维数组
label=lab.transform(y)# 使用transform调取结果
label

# 使用模型的classes_属性查看一共多少个类别
lab.classes_

# fit_transform方法可以直接把非数值的标签一步直接转化成数字标签
label=lab.fit_transform(y)

# 使用inverse_transform把数值标签转换成字符串标签
lab.inverse_transform(label)

# 现在直接对原始数据进行修改
data.iloc[:,-1]=lab.fit_transform(y)
data.head()

# 一行代码直接完成上面的功能
data.iloc[:,-1]=LabelEncoder().fit_transform(data.iloc[:,-1])
  • preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
# 特征专用,可以将分类的特征转换成数值的特征分类,将分类的特征转换为分类的数值
# 只能导入高维数组,不能导入一维数组
from sklearn.preprocessing import OrdinalEncoder

# 实例化对象
# iloc[:,1:-1])标示选取所有的行,从第一列选取到最后一列
# categories_和classes_作用一样,查看一共的种类
# iloc[]索引会去到第一个数字,第二个数字索引取不到,数组左开右闭
# 下面返回的结果是每一个特征包含的分类的种类
# categories_查看每一个特征中有多少个类别
OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_

# 直接一步到位的对数据进行转换
# fit_transform里面选取的是多列数据,属于高维的数据
data.iloc[:,1:-1]=OrdinalEncoder().fit_transform(data.iloc[:,1:-1])
data.head()
  • preprocessing.OneHotEncoder:独热编码,创建哑变量

我们刚才已经用OrdinalEncoder把分类变量Sex和Embarked都转换成数字对应的类别了。在舱门Embarked这一列中,我们使用[0,1,2]代表了三个不同的舱门,然而这种转换是正确的吗?

类别OrdinalEncoder可以用来处理有序变量(也就是可以相互进行计算的变量),但对于名义变量(不是用来相互计算的变量),我们只有使用哑变量的方式来处理,才能够尽量向算法传达最准确的信息:

 

这样的变化,让算法能够彻底领悟,原来三个取值是没有可计算性质的,是“有你就没有我”的不等概念。在我们的数据中,性别和舱门,都是这样的名义变量。因此我们需要使用独热编码,将两个特征都转换为哑变量。

# 独热编码,创建哑变量
from sklearn.preprocessing import OneHotEncoder
x=data.iloc[:,1:-1]

# 实例化模型
# categories='auto'
# 标示让模型自己遍历有多少个类别
enc=OneHotEncoder(categories='auto').fit(x)
# toarray()标示把结果转换成一个数组
result=enc.transform(x).toarray()
result
# 但是为什么会是5列数据,应为sxe有两个种类,Embarked有三个种类,所以一共有5个种类

# 在这里也可以使用一行代码直接解决
result=OneHotEncoder(categories='auto').fit_transform(x).toarray()

# 也可以对转换后的结果进行还原
pd.DataFrame(enc.inverse_transform(result))

# 查看哑属性的名字
enc.get_feature_names()

# 现在把哑特征和原来的矩阵进行拼接起来
# axis=1标示跨行进行合并,也就是将两个表进行左右连接
# 如果是axis=0,就是将两个表上下进行连接
newdata=pd.concat([data,pd.DataFrame(result)],axis=1)
newdata

# 跨行进行删除,删除sex和Embarked这两列下面的所有列
# inplace参数标示在原始数据上进行删除
# axis:永远记住,如果是对列操作,求均值或者其他,那么axis=1
# 对行进行操作的话,axis=0
newdata.drop(['Sex','Embarked'],axis=1,inplace=True)

# 修改newdata数据的列索引
newdata.columns=['Age','Survived','femail','mail','Embarked_c','Embarked_q','Embarked_s']
newdata.head()

特征可以做哑变量,标签也可以吗?可以,使用类sklearn.preprocessing.LabelBinarizer可以对标签做哑变量,许多算法都可以处理多标签问题(比如说决策树)。

  • 数据类型以及常用的统计量

2.4,处理连续型特征:二值化与分段

  • sklearn.preprocessing.Binarizer

根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量。大于阈值的值映射为1,而小于或等于阈值的值映射为0。默认阈值为0时,特征中所有的正值都映射到1。二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否。它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模)

# 特征工程,连续性数据的处理
# 比如对于年龄问题,年龄可以从1-100,是一个连续性的变量,而不是一个分类型的变量
# 数据的缺失处理
# 也就是连续性变量进行二分类处理
import pandas as pd
# index_col标示告诉第一列是索引列
data=pd.read_csv(r'H:\sklearn\菜菜的sklearn课堂课件\03数据预处理和特征工程\Narrativedata.csv',index_col=0)

# 将年龄进行二值化处理
from sklearn.preprocessing import Binarizer
# 取出年龄那一列,并且转换成高维数组
# Binarizer是用来接收特征的,所以不能用来处理一维的数据
# data.loc[:,'Age'].values标示取出series里面所有的数值
x=data.loc[:,'Age'].values.reshape(-1,1)
# 因为数据中有缺失值,所以现在对数据进行填充
data.loc[:,'Age']=data.loc[:,"Age"].fillna(data.loc[:,'Age'].mean())
data.info()
# 所有用来处理特征的类,都不可以使用一维数组作为参数,必须二维数组

# 实例化模型
# 二值化的含义是对于小于threshold的值设置为1,对于大于threshold的值设置为0
# 在做二值化处理时,数据不能有缺失值
transformer=Binarizer(threshold=30).fit_transform(x)
transformer
# Input contains NaN, infinity or a value too large for dtype('float64').
# 导致这种问题的原因是数据中有缺失值

# 现在对Survived列进行二值化处理
from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1]=LabelEncoder().fit_transform(data.iloc[:,-1])
m=data.loc[:,'Survived'].values.reshape(-1,1)
transformer01=Binarizer(threshold=1).fit_transform(m)
transformer01.shape

# 现在对副本数据进行替换
data.loc[:,'Age']=transformer
data.head()
  • preprocessing.KBinsDiscretizer

这是将连续型变量划分为分类变量的类,能够将连续型变量排序后按顺序分箱后编码。总共包含三个重要参数:

参数含义
n_bins每个特征中分箱的个数,默认5,一次会被运用到所有导入的特征
encode编码的方式,默认“onehot”
"onehot":做哑变量,之后返回一个稀疏矩阵,每一列是一个特征中的一个类别,含有该类别的样本表示为1,不含的表示为0
“ordinal”:每个特征的每个箱都被编码为一个整数,返回每一列是一个特征,每个特征下含有不同整数编码的箱的矩阵
"onehot-dense":做哑变量,之后返回一个密集数组。
strategy用来定义箱宽的方式,默认"quantile"
"uniform":表示等宽分箱,即每个特征中的每个箱的最大值之间的差为(特征.max() - 特征.min())/(n_bins)(数值间距相同)
"quantile":表示等位分箱,即每个特征中的每个箱内的样本数量都相同
"kmeans":表示按聚类分箱,每个箱中的值到最近的一维k均值聚类的簇心得距离都相同
# 对连续性变量,除了二值化,还可以进行分箱操作
# 等位分箱
from sklearn.preprocessing import KBinsDiscretizer
# 取出age数据
x=data.loc[:,'Age'].values.reshape(-1,1)

# 实例化模型
# n_bins标示分箱的个数
# ordinal有几个特征就返回多少列
# encode标示编码的方式,有几个特征,就有几列,每一列中包含特征所有的分类
# strategy分箱的方式,uniform标示按照等宽的方式分箱
# uniform是按照等宽分箱,比如0-10,11-20,但是不管每一个箱子里面的样本数量
est=KBinsDiscretizer(n_bins=3,encode='ordinal',strategy='uniform')
est.fit_transform(x)
# 输出结果为0,1,2,也就是分了三个箱子

# 也就是进行去重操作
set(est.fit_transform(x).ravel())

# 下面进行独热编码
# uniform标示等宽分箱
est=KBinsDiscretizer(n_bins=3,encode='onehot',strategy='uniform')
est.fit_transform(x).toarray()
# 返回结果是独热编码的系数矩阵

3,特征选择 feature_selection

处理完数据,下面我们就开始特征工程了。

特征提取
(feature extraction)
特征创造
(feature creation)
特征选择
(feature selection)

从文字,图像,声音等其他非结构化数据中

提取新信息作为特征。比如说,从淘宝宝贝

的名称中提取出产品类别,产品颜色,是否

是网红产品等等。

把现有特征进行组合,或互相计算,得到
新的特征。比如说,我们有一列特征是速
度,一列特征是距离,我们就可以通过让
两列相处,创造新的特征:通过距离所花
的时间。
从所有的特征中,选择
出有意义,对模型有帮
助的特征,以避免必须
将所有特征都导入模型
去训练的情况。

我们有四种方法可以用来选择特征:过滤法,嵌入法,包装法,和降维算法

3.1,Filter过滤法

过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。

3.1.1,方差过滤VarianceThreshold

这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。(方差越小越稳定)

# 特征选择,使用手写数字数据集
import pandas as pd
data=pd.read_csv(r"H:\sklearn\菜菜的sklearn课堂课件\03数据预处理和特征工程\digit recognizor.csv")
data.head()

data.iloc[:,1:]# 取出所有的行,从第一列开始

x=data.iloc[:100,1:]#  取出前100行数据
x.shape
# 一共42000行数据,784个特征,数据集很大,所以我们只选取其中一部分

# y是标签
y=data.iloc[:,0]# 取出第0列
y.shape
# 维度指的就是特征的数量

# filter过滤法
from sklearn.feature_selection import VarianceThreshold
# 实例化,参数不写的话默认标示0,也就是删除所有方差是0的那些特征
# 方差为0,说明这个特征中所有的数值都是一样的
# 某一个特征的方差很小,说明数据集在这个特征上的差异很小
selector=VarianceThreshold()# 默认方差是0,实例化一个对象,也就是默认删除方差是0的特征
x_var0=selector.fit_transform(x)# 获取删除不合格特征后的新特征矩阵
# VarianceThreshold.fit_transform()简写

x_var0.shape# 目前只剩下525个特征
# 通过本次赛选,已经把方差为0的特征列全部去掉,升邪525个特征列

可以看见,我们已经删除了方差为0的特征,但是依然剩下了525多个特征,明显还需要进一步的特征选择。然而,如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位。比如说,我们希望留下一半的特征,那可以设定一个让特征总数减半的方阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入就好了:

import numpy as np
# var()函数返回每一列特征的方差,返回的是一个series
# 我们也可以设定一个阈值,使得算法自动删除小于阈值的特征
x.var()#获取我们数据集的方差,默认获取每一列的方差
# 提取所有的方差。
x.var().values# 转换为一个数组
# 选取所有方差中的中位数
np.median(x.var().values)

# 把中位数作为参数,标示删除所有方差是中位数的特征列
x_fsvar=VarianceThreshold(np.median(x.var().values)).fit_transform(x)
# 阈值的作用,算法会把特征的方差小于我们设定的阈值的特征全部删除
x_fsvar.shape
# 经过第二次处理,特征只剩下391个

当特征是二分类时,特征的取值就是伯努利随机变量,这些变量的方差可以计算为:

其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率。

#若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
X_bvar = VarianceThreshold(.8 * (1 - .8)).fit_transform(x)
X_bvar.shape
# 也就是计算每个特征中,如果某一个分类占比达到80%以上,就删除这一个特征

3.1.2,方差过滤对模型的影响

我们这样做了以后,对模型效果会有怎样的影响呢?了KNN和随机森林分别在方差过滤前和方差过滤后运行的效果和运行时间的对比。KNN是K近邻算法中的分类算法,其原理非常简单,是利用每个样本到其他样本点的距离来判断每个样本点的相似度,然后对样本进行分类。KNN必须遍历每个特征和每个样本,因而特征越多,KNN的计算也就会越缓慢

# 把方差过滤法应用到knn算法和随机森林算法进行比较,准确度的比较和运行时间两个维度进行比较
#KNN vs 随机森林在不同方差过滤效果下的对比
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.model_selection import cross_val_score
import numpy as np

# 获取数据,方差过滤前的数据进行训练
x=data.iloc[:500,1:]
x.shape
# 一共42000行数据,784个特征

# 获取标签
# y是标签
y=data.iloc[:500,0]
y.shape
# 进行特征选择,以数据集方差的中位数作为阈值
x_fsvar=VarianceThreshold(np.median(x.var().values)).fit_transform(x)
x_fsvar.shape
# 作为方差过滤后的数据进行训练计算
# 经过中位数阈值的特征选择之后,剩下392个可选的特征

我们从模块neighbors导入KNeighborsClassfier缩写为KNN,导入随机森林缩写为RFC,然后导入交叉验证模块和numpy。其中未过滤的数据是X和y,使用中位数过滤后的数据是X_fsvar。

#python中的魔法命令,可以直接使用%%timeit来计算运行这个cell中的代码所需的时间
#为了计算所需的时间,需要将这个cell中的代码运行很多次(通常是7次)后求平均值,因此运行%%timeit的时间会
远远超过cell中的代码单独运行的时间
#======【TIME WARNING:4 hours】======#
%%timeit
cross_val_score(KNN(),X,y,cv=5).mean()

%%timeit# ppython中的魔法命令,会返回这一个单元所有代码运行完毕使用的时间
# 下面对knn算法进行校验
# 把x作为方差过滤前的数据集,y作为标签,做5次交叉验证,然后求得平均值
cross_val_score(KNN(),x,y,cv=5).mean()

# 数据经过方差过滤之后
cross_val_score(KNN(),x_fsvar,y,cv=5).mean()
# 对于knn算法,对特征进行方差过滤后预测精度提升的效果非常的明显,平均运行时间也会减少很多
# 使用特征选择之后的数据,准确度提高

# 使用随机森林进行验证
cross_val_score(RFC(n_estimators=10,random_state=0),x,y,cv=10).mean()

# 随机森林使用方差过滤后的特征
cross_val_score(RFC(n_estimators=10,random_state=0),x_fsvar,y,cv=10).mean()
# 准确度提高

# 使用方差过滤,准确度也会明显的提高,并且平均时间也会提高
# 但是随机森林的准确率是没有knn算法高
# 阈值的选择,方差过滤一般是预处理的方式

首先可以观察到的是,随机森林的准确率略逊于KNN,但运行时间却连KNN的1%都不到,只需要十几秒钟。其次,方差过滤后,随机森林的准确率也微弱上升,但运行时间却几乎是没什么变化,依然是11秒钟。

为什么随机森林运行如此之快?为什么方差过滤对随机森林没很大的有影响?这是由于两种算法的原理中涉及到的计算量不同。最近邻算法KNN,单棵决策树,支持向量机SVM,神经网络,回归算法,都需要遍历特征或升维来进行运算,所以他们本身的运算量就很大,需要的时间就很长,因此方差过滤这样的特征选择对他们来说就尤为重要。但对于不需要遍历特征的算法,比如随机森林,它随机选取特征进行分枝,本身运算就非常快速,因此特征选择对它来说效果平平。这其实很容易理解,无论过滤法如何降低特征的数量,随机森林也只会选取固定数量的特征来建模;而最近邻算法就不同了,特征越少,距离计算的维度就越少,模型明显会随着特征的减少变得轻量。因此,过滤法的主要对象是:需要遍历特征或升维的算法们,而过滤法的主要目的是:在维持算法表现的前提下,帮助算法们降低计算成本。

过滤法对随机森林无效,却对树模型有效?

从算法原理上来说,传统决策树需要遍历所有特征,计算不纯度后进行分枝,而随机森林却是随机选择特征进行计算和分枝,因此随机森林的运算更快,过滤法对随机森林无用,对决策树却有用,

在sklearn中,决策树和随机森林都是随机选择特征进行分枝(不记得的小伙伴可以去复习第一章:决策树,参数random_state),但决策树在建模过程中随机抽取的特征数目却远远超过随机森林当中每棵树随机抽取的特征数目(比如说对于这个780维的数据,随机森林每棵树只会抽取10~20个特征,而决策树可能会抽取300~400个特征),因此,过滤法对随机森林无用,却对决策树有用

也因此,在sklearn中,随机森林中的每棵树都比单独的一棵决策树简单得多,高维数据下的随机森林的计算比决策树快很多。

对受影响的算法来说,我们可以将方差过滤的影响总结如下:

 阈值很小
被过滤掉得特征比较少
阈值比较大
被过滤掉的特征有很多
模型表现不会有太大影响可能变更好,代表被滤掉的特征大部分是噪音
也可能变糟糕,代表被滤掉的特征中很多都是有效特征
运行时间可能降低模型的运行时间
基于方差很小的特征有多少
当方差很小的特征不多时
对模型没有太大影响
一定能够降低模型的运行时间
算法在遍历特征时的计算越复杂,运行时间下降得越多

在我们的对比当中,我们使用的方差阈值是特征方差的中位数,因此属于阈值比较大,过滤掉的特征比较多的情况。我们可以观察到,无论是KNN还是随机森林,在过滤掉一半特征之后,模型的精确度都上升了。这说明被我们过滤掉的特征在当前随机模式(random_state = 0)下大部分是噪音。那我们就可以保留这个去掉了一半特征的数据,来为之后的特征选择做准备。当然,如果过滤之后模型的效果反而变差了,我们就可以认为,被我们过滤掉的特征中有很多都有有效特征,那我们就放弃过滤,使用其他手段来进行特征选择。

3.1.2,选取超参数threshold

我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?答案是:每个数据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法继续削减特征数量。

3.2,相关性过滤

方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息

3.2.1,卡方过滤

卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征

另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后模型的表现反而降低了,那我们就不会使用方差过滤后的数据,而是使用原数据):

# 使用手写数字数据集
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection  import cross_val_score
from sklearn.feature_selection import SelectKBest # 选取分数最高的特征的
from sklearn.feature_selection import chi2 # 卡方检验的类
from sklearn.feature_selection import VarianceThreshold

# 卡方过滤
# 特征选择
import pandas as pd
data=pd.read_csv(r"H:\sklearn\菜菜的sklearn课堂课件\03数据预处理和特征工程\digit recognizor.csv")
data.shape

X=data.iloc[:100,:]
X.shape
y=data.iloc[:,0]

# 第一个参数表示用什么分布检验,比如卡方分布,F检验,第二个参数标示选取前多少个复合条件的特征
# k标示选取前k个卡方分布最好的特征
# 第二个参数也就是k的取值,也就是选取多少个最优的特征
# 先使用方差进行特征选择
x_var=VarianceThreshold()# 声明一个方差检验的对象
x_fsvar=x_var.fit_transform(X)# 首先进行方差特征选择后,产生新的特征矩阵,然后在进行卡方检验
x_fschi=SelectKBest(chi2,350).fit_transform(x_fsvar,y)
x_fschi.shape
# 经过卡方分布的筛选,目前剩下250个特征

from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#假设在这里我一直我需要300个特征
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
X_fschi.shape


cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()

可以看出,模型的效果降低了,这说明我们在设定k=300的时候删除了与模型相关且有效的特征,我们的K值设置得太小,要么我们需要调整K值,要么我们必须放弃相关性过滤。当然,如果模型的表现提升,则说明我们的相关性过滤是有效的,是过滤掉了模型的噪音的,这时候我们就保留相关性过滤的结果。

3.2.2,选取超参数K

那如何设置一个最佳的K值呢?在现实数据中,数据量很大,模型很复杂的时候,我们也许不能先去跑一遍模型看看效果,而是希望最开始就能够选择一个最优的超参数k。那第一个方法,就是我们之前提过的学习曲线:

# 对于k值的选取,哦们使用学习曲线进行选取
import matplotlib.pyplot as plt
scores=[]
for i in range(390,200,-10):
    x_fschi=SelectKBest(chi2,i).fit_transform(x_fsvar,y)
    score=cross_val_score(RFC(n_estimators=10,random_state=0),x_fschi,y,cv=10).mean()
    scores.append(score)
plt.plot(range(390,200,-10),scores)
plt.show()

通过这条曲线,我们可以观察到,随着K值的不断增加,模型的表现不断上升,这说明,K越大越好,数据中所有的特征都是与标签相关的。但是运行这条曲线的时间同样也是非常地长,接下来我们就来介绍一种更好的选择k的方法:看p值选择k。

卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断的边界,具体我们可以这样来看:

从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值。

# 第二种方法选择k
# 看p值选择k值
# 返回第一个值是卡方值,第二个值是p值
chivalue,pvalues_chi=chi2(x_fschi,y)
# 查看返回的卡方值
chivalue.shape

pvalues_chi
# 我们发现所有特征的p值都小于0.05,所以所有的特征都是和标签相关的
# 所以我们拒绝原假设,接受备择假设
# 既然这些特征都是和标签相关,那么我们砍掉的特征越多,模型预测也就越不准确
# 也就是说这些特征对标签有贡献,对模型有影响
# 所以说我们拒绝原假设,也就是消除p值大于0.05的那些特征

# 使用bool索引查看我们想要删除的特征的个数
(pvalues_chi>0.05).sum()
# 结果是0,因为所有的特征对应的p值都是小于0.05的

# 在用所有特征的总数-要删除的特征的数量,就是k值,也就是需要的特征个数
k=chivalue.shape[0]-(pvalues_chi>0.05).sum()
k

可以观察到,所有特征的p值都是0,这说明对于digit recognizor这个数据集来说,方差验证已经把所有和标签无关的特征都剔除了,或这个数据集本身就不含与标签无关的特征。在这种情况下,舍弃任何一个特征,都会舍弃对模型有用的信息,而使模型表现下降,因此在我们对计算速度感到满意时,我们不需要使用相关性过滤来过滤我们的数据。如果我们认为运算速度太缓慢,那我们可以酌情删除一些特征,但前提是,我们必须牺牲模型的表现。接下来,我们试试看用其他的相关性过滤方法验证一下我们在这个数据集上的结论。

3.2.3,F检验

F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回归)两个类。其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。

和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我们会先将数据转换成服从正态分布的方式。

F检验的本质是寻找两组数据之间的线性关系,其原假设是”数据不存在显著的线性关系“。它返回F值和p值两个统计量。和卡方过滤一样,我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。以F检验的分类为例,我们继续在数字数据集上来进行特征选择:

# 现在使用F检验进行过滤
from sklearn.feature_selection import f_classif
# 返回F值和p值两个统计量
F,p_value=f_classif(x_fschi,y)

# 求k值
k=F.shape[0]-(p_value>0.05).sum()

#X_fsF = SelectKBest(f_classif, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=5).mean()

得到的结论和我们用卡方过滤得到的结论一模一样:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。

3.2.4,互信息法

互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法。和F检验相似,它既可以做回归也可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和feature_selection.mutual_info_regression(互信息回归)。这两个类的用法和参数都和F检验一模一样,不过互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系。

互信息法不返回p值或F值类似的统计量,它返回“每个特征与目标之间的互信息量的估计”,这个估计量在[0,1]之间取值,为0则表示两个变量独立,为1则表示两个变量完全相关。以互信息分类为例的代码如下:

# 使用互信息法进行过滤
from sklearn.feature_selection import mutual_info_classif as MIC
# 返回的结果是两列数据互信息量的估计,也就是两列信息相关性的估计
result=MIC(x_fschi,y)
result.shape
# 一共有350个数据,也就是说明把每一个特征和标签y之间的互信息都计算出来,判断
# 每一个特征和标签之间的相关性

k=result.shape[0]-(result <= 0).sum()

所有特征的互信息量估计都大于0,因此所有特征都与标签相关。

当然了,无论是F检验还是互信息法,大家也都可以使用学习曲线,只是使用统计量的方法会更加高效。当统计量判断已经没有特征可以删除时,无论用学习曲线如何跑,删除特征都只会降低模型的表现。当然了,如果数据量太庞大,模型太复杂,我们还是可以牺牲模型表现来提升模型速度,一切都看大家的具体需求。

3.2.5,过滤法总结

到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。通常来说,我会建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。

说明超参数选择
VarianceThreshold方差过滤,可输入方差阈值,返回方差大于
阈值的新特征矩阵
看具体数据究竟是含有更多噪声还是更多有效特征
一般就使用0或1来筛选也可以画学习曲线或取中位数
跑模型来帮助确认
SelectKBest用来选取K个统计量结果最佳的特征,生成
符合统计量要求的新特征矩阵
看配合使用的统计量
chi2卡方检验,专用于分类算法,捕捉相关性追求p小于显著性水平的特征
f_classifF检验分类,只能捕捉线性相关性
要求数据服从正态分布
追求p小于显著性水平的特征
f_regressionF检验回归,只能捕捉线性相关性
要求数据服从正态分布
追求p小于显著性水平的特征
mutual_info_classif互信息分类,可以捕捉任何相关性
不能用于稀疏矩阵
追求互信息估计大于0的特征
mutual_info_regression互信息回归,可以捕捉任何相关性
不能用于稀疏矩阵
追求互信息估计大于0的特征

3.2,Embedded嵌入法

嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。并且,由于考虑特征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤的特征)都会因为
缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版。

过滤法中使用的统计量可以使用统计知识和常识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用的权值系数却没有这样的范围可找——我们可以说,权值系数为0的特征对模型丝毫没有作用,但当大量特征都对模型有贡献且贡献不一时,我们就很难去界定一个有效的临界值。这种情况下,模型权值系数就是我们的超参数,我们或许需要学习曲线,或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。在我们之后的学习当中,每次讲解新的算法,我都会为大家提到这个算法中的特征工程是如何处理,包括具体到每个算法的嵌入法如何使用。在这堂课中,我们会为大家讲解随机森林和决策树模型的嵌入法。

另外,嵌入法引入了算法来挑选特征,因此其计算速度也会和应用的算法有很大的关系。如果采用计算量很大,计算缓慢的算法,嵌入法本身也会非常耗时耗力。并且,在选择完毕之后,我们还是需要自己来评估模型。

  • feature_selection.SelectFromModel
class sklearn.feature_selection.SelectFromModel (estimator, threshold=None, prefit=False, norm_order=1,
max_features=None)

SelectFromModel是一个元变换器,可以与任何在拟合后具有coef_,feature_importances_属性或参数中可选惩罚项的评估器一起使用(比如随机森林和树模型就具有属性feature_importances_,逻辑回归就带有l1和l2惩罚项,线性支持向量机也支持l2惩罚项)。

对于有feature_importances_的模型来说,若重要性低于提供的阈值参数,则认为这些特征不重要并被移除。feature_importances_的取值范围是[0,1],如果设置阈值很小,比如0.001,就可以删除那些对标签预测完全没贡献的特征。如果设置得很接近1,可能只有一两个特征能够被留下。

  • 使用惩罚项的模型的嵌入法

而对于使用惩罚项的模型来说,正则化惩罚项越大,特征在模型中对应的系数就会越小。当正则化惩罚项大到一定的程度的时候,部分特征系数会变成0,当正则化惩罚项继续增大到一定程度时,所有的特征系数都会趋于0。 但是我们会发现一部分特征系数会更容易先变成0,这部分系数就是可以筛掉的。也就是说,我们选择特征系数较大的特征。另外,支持向量机和逻辑回归使用参数C来控制返回的特征矩阵的稀疏性,参数C越小,返回的特征越少。Lasso回归,用alpha参数来控制返回的特征矩阵,alpha的值越大,返回的特征越少。

  • 参数说明
参数含义
estimator使用的模型评估器,只要是带feature_importances_或者coef_属性,或带有l1和l2惩罚
项的模型都可以使用
threshold特征重要性的阈值,重要性低于这个阈值的特征都将被删除
prefit默认False,判断是否将实例化后的模型直接传递给构造函数。如果为True,则必须直接
调用fit和transform,不能使用fit_transform,并且SelectFromModel不能与
cross_val_score,GridSearchCV和克隆估计器的类似实用程序一起使用。
norm_orderk可输入非零整数,正无穷,负无穷,默认值为1
在评估器的coef_属性高于一维的情况下,用于过滤低于阈值的系数的向量的范数的阶
数。
max_features在阈值设定下,要选择的最大特征数。要禁用阈值并仅根据max_features选择,请设置
threshold = -np.inf

我们重点要考虑的是前两个参数。在这里,我们使用随机森林为例,则需要学习曲线来帮助我们寻找最佳特征值。
 

# 嵌入法:embedded
# 嵌入法在随机森林和决策树中的使用
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier as RFC
# 实例化随机森林
RFC_=RFC(n_estimators=100,random_state=0)
# 实例化嵌入法的模型
# 第二个参数是阈值,小于此阈值的特征全都会被砍掉
# 此处的x数据集没有被过滤
# 这里的阈值一般都是在0-1之间
x_embedded=SelectFromModel(RFC_,threshold=0.005).fit_transform(x,y)
x_embedded.shape
# 选择出42个特征,模型的维度明显降低
# 查看训练好的模型特征的重要性

RFC_.fit(x,y).feature_importances_
  • 阈值的选择
# 但是对于threshold值,我们如何取值呢?
# 使用学习曲线进行取值
'''但是如何选取x轴阈值的取值范围呢,我们先可以对各个特征的重要性取出其最大值
然后在0-最大值之间进行遍历,画出学习曲线'''
import numpy as np
import matplotlib.pyplot as plt
(RFC_.fit(x,y).feature_importances_).max()
max(RFC_.fit(x,y).feature_importances_)

threshold=np.linspace(0,RFC_.fit(x,y).feature_importances_.max(),30)

# for i in range(RFC_.fit(x,y).feature_importances_)但是range()函数包含第一个数,不包含第二个数
# 并且第三个参数是步长,我们很难界定步长多少,所以我们使用linspace()函数,第一个参数是开头,第二个
# 是结尾,第三个参数是选取的数据个数,所以说此参数是用来选取在最大值和最小值之间选取有限个数
# 的时候来使用的
scores=[]
for i in np.linspace(0,RFC_.fit(x,y).feature_importances_.max(),30):
    x_embedded=SelectFromModel(RFC_,threshold=i).fit_transform(x,y)
    score=cross_val_score(RFC_,x_embedded,y,cv=5).mean()
    scores.append(score)
plt.plot(np.linspace(0,RFC_.fit(x,y).feature_importances_.max(),30),scores)
plt.show()

从图像上来看,随着阈值越来越高,模型的效果逐渐变差,被删除的特征越来越多,信息损失也逐渐变大。但是在0.00134之前,模型的效果都可以维持在0.93以上,因此我们可以从中挑选一个数值来验证一下模型的效果。我们可以进一步细化学习曲线,找出k值。在嵌入法下,我们很容易就能够实现特征选择的目标:减少计算量,提升模型表现。因此,比起要思考很多统计量的过滤法来说,嵌入法可能是更有效的一种方法。然而,在算法本身很复杂的时候,过滤法的计算远远比嵌入法要快,所以大型数据中,我们还是会优先考虑过滤法。

3.3,Wrapper包装法

包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择。但不同的是,我们往往使用一个目标函数作为黑盒来帮助我们选取特征,而不是自己输入某个评估指标或统计量的阈值。包装法在初始特征集上训练评估器,并且通过coef_属性或通过feature_importances_属性获得每个特征的重要性。然后,从当前的一组特征中修剪最不重要的特征。在修剪的集合上递归地重复该过程,直到最终到达所需数量的要选择的特征。区别于过滤法和嵌入法的一次训练解决所有问题,包装法要使用特征子集进行多次训练,因此它所需要的计算成本是最高的。

注意,在这个图中的“算法”,指的不是我们最终用来导入数据的分类或回归算法(即不是随机森林),而是专业的数据挖掘算法,即我们的目标函数。这些数据挖掘算法的核心功能就是选取最佳特征子集。

最典型的目标函数是递归特征消除法(Recursive feature elimination, 简写为RFE)。它是一种贪婪的优化算法,旨在找到性能最佳的特征子集。 它反复创建模型,并在每次迭代时保留最佳特征或剔除最差特征,下一次迭代时,它会使用上一次建模中没有被选中的特征来构建下一个模型,直到所有特征都耗尽为止。 然后,它根据自己保留或剔除特征的顺序来对特征进行排名,最终选出一个最佳子集。包装法的效果是所有特征选择方法中最利于提升模型表现的,它可以使用很少的特征达到很优秀的效果。除此之外,在特征数目相同时,包装法和嵌入法的效果能够匹敌,不过它比嵌入法算得更见缓慢,所以也不适用于太大型的数据。相比之下,包装法是最能保证模型效果的特征
选择方法。

  • feature_selection.RFE
class sklearn.feature_selection.RFE (estimator, n_features_to_select=None, step=1, verbose=0)

参数estimator是需要填写的实例化后的评估器,n_features_to_select是想要选择的特征个数,step表示每次迭代中希望移除的特征个数。除此之外,RFE类有两个很重要的属性,.support_:返回所有的特征的是否最后被选中的布尔矩阵,以及.ranking_返回特征的按数次迭代中综合重要性的排名。类feature_selection.RFECV会在交叉验证循环中执行RFE以找到最佳数量的特征,增加参数cv,其他用法都和RFE一模一样。

from sklearn.feature_selection import RFE
RFC_ = RFC(n_estimators =10,random_state=0)
selector = RFE(RFC_, n_features_to_select=340, step=50).fit(X, y)
selector.support_.sum()
selector.ranking_
X_wrapper = selector.transform(X)
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
  • 参数的选择(学习曲线)
score = []
for i in range(1,751,50):
    X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
    once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()

明显能够看出,在包装法下面,应用50个特征时,模型的表现就已经达到了90%以上,比嵌入法和过滤法都高效很多。我们可以放大图像,寻找模型变得非常稳定的点来画进一步的学习曲线(就像我们在嵌入法中做的那样)。如果我们此时追求的是最大化降低模型的运行时间,我们甚至可以直接选择50作为特征的数目,这是一个在缩减了94%的特征的基础上,还能保证模型表现在90%以上的特征组合,不可谓不高效。

同时,我们提到过,在特征数目相同时,包装法能够在效果上匹敌嵌入法。试试看如果我们也使用340作为特征数目,运行一下,可以感受一下包装法和嵌入法哪一个的速度更加快。由于包装法效果和嵌入法相差不多,在更小的范围内使用学习曲线,我们也可以将包装法的效果调得很好,大家可以去试试看。

4,小结

至此,我们讲完了降维之外的所有特征选择的方法。这些方法的代码都不难,但是每种方法的原理都不同,并且都涉及到不同调整方法的超参数。经验来说,过滤法更快速,但更粗糙。包装法和嵌入法更精确,比较适合具体到算法去调整,但计算量比较大,运行时间长。当数据量很大的时候,优先使用方差过滤和互信息法调整,再上其他特征选择方法。使用逻辑回归时,优先使用嵌入法。使用支持向量机时,优先使用包装法。迷茫的时候,从过滤法走起,看具体数据具体分析。

参考资料:

[1] https://www.bilibili.com/video/BV1WJ411k7L3?p=228

[2] https://scikit-learn.org/stable/index.html

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值