综述学习笔记(区块链赋能AI)
(2024-07-10) BC4LLM: a perspective of trusted artificial intelligence when blockchain meets large language models (BC4LLM:当区块链遇上大语言模型的信任人工智能视角)
作者: Haoxiang Luo; Jian Luo; Athanasios V. Vasilakos;
期刊: Neurocomputing, 599: 128089, 2024.
期刊分区: ㅤIF 5.5 ㅤㅤ Q1 ㅤㅤCCF C ㅤㅤEI ㅤSCI基础版 工2 ㅤㅤ ㅤㅤ
DOI: 10.1016/j.neucom.2024.128089
摘要:近年来,人工智能(AI)和机器学习(ML)正在重塑社会的生产方式与生产力,同时也改变着科学研究的范式。其中,以ChatGPT为代表的大语言模型(LLMs)取得了重大进展。这类大语言模型以AI生成内容(AIGC)的形式为人们服务,并在咨询、医疗、教育等领域得到广泛应用。然而,AIGC学习数据的真实性和可靠性难以保障,分布式AI训练中也可能存在隐私泄露的隐患。此外,LLMs生成的内容难以识别与溯源,且跨平台的互认性较差。上述信息安全问题在即将到来的LLMs驱动的AI时代将被无限放大,并与每个人的生活产生关联。因此,我们考虑利用区块链技术优越的安全特性为LLMs赋能,从而提出可信AI的愿景。本次调研主要介绍了区块链应用于LLM(BC4LLM)的动机与技术路线,包括可信的学习语料库、安全的训练过程以及可识别的生成内容。同时,本文还回顾了其潜在应用与未来的挑战,尤其是在前沿通信网络领域,如网络资源分配、动态频谱共享以及语义通信等。基于上述工作,结合区块链与LLMs的发展前景,有望助力可信AI的早期实现,并为学术界提供指导意义。
⏰创建时间:2025/3/16 16:33:49
🔗 当区块链遇见大语言模型:可信AI新视野
🌐 研究背景
AI与机器学习正重塑社会生产力与科研范式,以ChatGPT为代表的LLM通过生成式内容(AIGC)广泛应用于咨询、医疗、教育等领域。但面临三大核心问题:
-
数据可信度:训练数据真实性难保障
-
隐私泄露风险:分布式训练存在安全隐患
-
内容溯源性:生成内容难追踪且跨平台互认性差
🛡️ BC4LLM技术路径
提出区块链赋能LLM的解决方案:
🔸 可信语料库:去中心化数据验证机制
🔸 安全训练流程:分布式隐私保护技术
🔸 内容标识体系:数字指纹与跨链追踪系统
📡 通信网络应用场景
在前沿通信领域潜在应用:
-
网络资源动态分配优化
-
频谱共享智能决策支持
-
语义通信框架可信增强
🚀 挑战与展望
需突破区块链存储扩展性、计算效率与机器学习模型的协同优化,为可信AI的早期实现提供技术蓝图与学术指引。
🚀 AIGC时代的大语言模型发展
-
技术突破:基于Transformer架构的LLM(如ChatGPT、ERNIE Bot)突破传统RNN/CNN限制,支持跨模态内容生成(文本/图像/音乐)。
-
广泛应用:覆盖教育🔬、公共卫生🏥、军事⚔️等领域,通过数据学习生成人类可理解的输出。
🔒 LLM面临的三大安全挑战
-
数据源头风险:语料库来源未知/错误导致生成内容不可靠;
-
版权与溯源:生成内容确权困难,共享缺乏追溯性;
-
隐私泄露隐患:分布式训练引发多数据中心隐私风险。
🔗 区块链技术赋能LLM安全
-
技术融合优势:共识机制+密码学算法+分布式数据库,已成功应用于物联网🌐、联邦学习📚等领域;
-
BC4LLM创新:首次提出区块链全程保障LLM学习-训练-生成三阶段安全,构建可信AI生态。
📜 本文核心贡献
• 技术剖析:系统阐述区块链与LLM的基础关联;
• 安全症结:梳理LLM安全漏洞及区块链必要性;
• 框架突破:首创BC4LLM概念及技术部署方案;
• 场景展望:高安全性需求的智能金融💹、司法⚖️领域应用潜力;
• 挑战指南:提出技术瓶颈与未来研究方向。
📖 论文结构导览
章节 | 内容要点 |
---|---|
2 | 区块链/LLM/区块链AI技术背景 |
3 | LLM与区块链的协同必要性 |
4 | BC4LLM技术实现方案 |
5-6 | 应用场景与技术挑战分析 |
🔍 背景知识
💻 区块链技术
-
核心定位:去中心化账本管理系统,实现P2P网络无中介的分布式交易记录与验证
-
双层架构:
-
🖥️ 基础设施层:维护P2P网络,负责通信连接与算力存储
-
🔗 区块链层:通过「交易→区块→区块链」逻辑链确保信息安全(密码学验证+共识机制)
-
-
关键技术:
-
⚙️ 共识机制保障网络一致性(交易顺序的清晰性和所有参与者的一致性)
-
🤖 智能合约实现自动化系统运行
-
-
应用价值:为AI提供可信数据源与安全决策基础
📜 大语言模型(LLM)
-
核心能力:基于统计建模的文本序列概率预测,支持自然语言生成与多任务适应
-
典型架构(以GPT-3.5为例):
-
🧩 12层Transformer模块堆叠
-
🧠 自注意力机制+位置编码+残差连接技术优化
-
-
突破性进展:
-
🚀 GPT-4实现多模态输入/输出
-
📊 专业测试超越90%人类(如司法考试模拟)
-
⛓️ 区块链赋能AI
-
融合优势:
-
🔐 区块链加密特性保障AI数据安全与完整性
-
🌐 分布式结构增强系统容错性(如联邦学习中消除中心节点风险)
-
🧠拜占庭容错机制:基于区块链的分布式机器学习,以保护训练模型的安全性。
-
-
创新方案:
-
🛡️ Byzantine-resilience框架抵御恶意攻击
-
⚡ ChainsFL结合分片技术和联邦学习提升计算效率和安全性
-
-
应用领域:
-
🚗 车联网安全
-
🆔 分布式身份认证
-
🔒 隐私计算架构
-
🚀数字孪生
-
🌐 大语言模型为何需要区块链?
3.1 学习语料库 📚
3.1.1 语料来源
-
开放数据:包括爬取数据🔍、开放数据集(如ImageNet、COCO)和资源共享平台(如Kaggle),需人工清洗,可用性较低。
-
服务商数据:专业机构提供高质量、合规数据📊,可定制化快速交付,降低LLM训练成本。
-
机构自有数据:企业通过用户授权收集的深度数据(如用户画像、行为分析),目标导向性强🎯。
3.1.2 挑战 🔒
-
数据控制权难保障:用户被迫同意隐私条款,数据所有权由企业掌控,使用范围不透明。
-
利益分配不均:LLM集中于大企业,用户作为数据贡献者难以获取合理权益。
3.2 训练过程 ⚙️
3.2.1 训练模式现状
-
集中式架构弊端:灵活性差、可扩展性低,依赖单一数据中心❌。
-
分布式解决方案:联邦学习(FL)与分布式ML成为主流,结合优化工具(如DeepSpeed、Megatron-LM)📈。
3.2.2 安全与隐私挑战
-
投毒攻击:数据或模型参数被篡改,影响协作训练;对抗样本攻击:输入带细微扰动的数据欺骗训练好的模型,导致错误预测,主要在推理阶段进行💣
-
隐私泄露:主要包括基于学习语料的攻击、基于推理的攻击和基于提示的攻击。通过LLM的记忆特性或特殊提示诱导,暴露用户敏感信息(如医疗记录)。🔓
3.3 生成内容 🎨
3.3.1 AIGC标识现状
-
Web 2.0时代:平台中心化存储用户生成内容(UGC),注重即时性与互动性🔗。
-
Web 3.0时代:区块链技术(如NFT)确保AIGC唯一性,记录所有权与基因信息(如CryptoPunk、加密猫)。⛓️
3.3.2 标识挑战
-
确权困难:内容易被盗用,人工确权耗时费力⏳。
-
追踪难题:恶意内容源头难溯源,责任归用户而非提供商⚖️。
-
跨平台互认障碍:标识技术标准不一(如水印与哈希值),协作性不足🌉。
4. 区块链如何赋能大语言模型?
通过区块链技术在学习语料可靠性🔥、训练过程安全性🔒和生成内容可溯源性🌐三方面,共建可信AI大语言模型(架构见图7)。
4.1 可靠学习语料库
利用区块链实现:
-
数据确权体系
通过三位一体架构(客户端/区块链网络/分布式账本)保障语料版权:-
客户端采用局部敏感哈希生成数据指纹
-
区块链网络通过节点间传输区块与交易数据实现一致性保持与数据同步,使用Gossip等广播协议同步数据
-
分布式账本通过不可篡改交易记录确权,通过底层键值数据库实现交易交互
-
-
利益分配重构
BABG等模型通过"区块链+博弈论+优化理论"优化激励机制:-
智能合约实现自动利润分配
-
训练数据权重决定收益分成
-
双向拍卖机制平衡供需利益
-
将区块链与博弈论相结合以确定最优利润分配
-
4.2 安全训练过程
双技术路线保障训练安全:
-
加密技术路径:
-
差分隐私+同态加密(如PoA共识方案)
-
模型水印嵌入神经网络参数
-
-
共识机制路径:
-
抗拜占庭节点的PoA共识
-
DAG区块链简化联邦学习认证
-
零知识证明验证参与者身份
-
4.3 可溯生成内容
结合SSI与DID技术:
-
**自我主权身份(SSI)**🏷️:
-
实现用户对生成内容的自主管理
-
具备7大核心功能((1)能够直接与其他对等方通信/真实性/匿名性/完整性/去中心同步等/以自我主权的方式识别自身/对主体的可问责性)
-
-
**去中心化标识符(DID)**🔗:
-
W3C标准实现跨平台内容交互
-
区块链储存DID文档确认真实性
-
已应用于能源交易等场景验证可行性
通过区块链技术矩阵,构建覆盖数据源头→训练过程→内容产出的全链路可信AI生态。
-
🌐 BC4LLM应用概览
结合区块链的LLM(BC4LLM)通过安全可信特性拓展了场景边界:
-
🔒 数据敏感领域:金融交易、教育评分、医疗诊断等需高安全性场景;
-
📊 预测真实性保障:区块链确保模型训练结果的不可篡改性;
-
🌐 多模态集成应用:覆盖金融预测、教育分析、医疗辅助等技术方向。
🏦 5.1 金融科技
现状与潜力:
-
当前以「专家经验驱动」的小模型为主,LLM可:
-
预测信贷风险(欺诈检测/反洗钱📉);
-
提升客服效率(语音识别&NLP💬);
-
彭博GPT在金融任务中表现超现有模型53%,帮助分析、预测与投资;
-
-
🌐 区块链赋能:
-
隐私保密性;
-
交易记录不可篡改(如跨境转账💱);
-
Baliker方案抵御新型网络攻击🛡️。
-
⚡ 5.2 能源交易
双技术融合:
-
🤖 AI功能:
-
预测能源价格趋势(供需/经济数据建模📈预测储备,风险);
-
社交媒体情绪分析辅助定价(Cai方案案例🌍);
-
-
🔗 区块链保障:
-
电力数据防窃取(用户用电模式隐私🔐用户侧+发电侧);
-
智能合约自动化交易(Luo共识框架案例⚙️提出改进的共识机制)。
-
🕶️ 5.3 元宇宙与Web 3.0
技术基座构建:
-
🧠 LLM使能:
-
高精度语音交互(虚拟角色实时生成🎮并生成逼真的虚拟环境);
-
跨虚实世界数据预测(Ramalingam智慧城市案例🌇);
-
-
⛓️ 区块链保障:
-
分布式身份管理(哈希溯源🔍安全与隐私);
-
OTCE架构整合硬件资源(按需可信计算环境💻)。
-
📚 5.4 教育
突破与革新:
-
✨ 应用场景:
-
ChatGPT辅助写作与学情分析;
-
疫情间区块链微证书认证案例🎓;
-
-
🔐 安全保障:
-
通过可信数据为学生生成可靠的参考内容;(可信)
-
AI内容可信溯源(反抄袭跟踪📑);
-
成绩数据链上加密(防泄露攻击🔒)。
-
🏥 5.5 医疗健康
精准与安全并重:
-
🩺 诊断辅助:
-
影像异常标识(降低误诊率30%📉);
-
穿戴设备实时监测(传感器联动⌚);
-
-
⚙️ 区块链方案:
-
分布式存储模式和数据加密技术确保了医疗隐私的完整性和安全存储
-
病历分布式存储(时间戳追踪访问记录⏳);
-
电子病历加密账本,安全地记录和保护患者的医疗隐私(参考文献153框架📁)。
-
🌐 5.6 网络资源分配
智能调度革命:
-
📶 关键突破:
-
预测拥塞/故障(边缘计算优化🌍);
-
无人机群资源交易安全协议(参考文献159✈️);
-
-
🧩 区块链特性:
-
算力/带宽链上交易市场(P2P资源调配💡);
-
智能合约自动分配(云边网络案例☁️)。
-
📡 5.7 动态频谱共享(是应对无线服务增长但频谱资源有限这一局面的必要变革)
6G通信基石:
-
📊 LLM预测:
-
Transformer分析信号特征(文献162方案📶);
-
频谱效率动态优化(B5G核心能力🔋);
-
-
⚖️ 区块链协调:
-
SpectrumChain去中心化管理(多运营商平台🔗);
-
加密算法保障用户隐私(防恶意截取🛡️)。
-
💬 5.8 语义通信
突破香农极限:(语义通信被视为对香农范式的突破,其目标是成功传达信息源的语义信息,而非精确接收每个符号或比特)
-
🌟 技术革新:
-
多模态语义库建设(文本/音频/图片整合🎨);
-
分块语义推理(文献173链式共享框架🌀);
-
-
🛡️ 安全强化:
-
分散式语义系统(防单点崩溃🏗️);
-
恶意攻击检测(语义提取过程加密🔏)。
-
🌟 BC4LLM未来六大挑战
🔗 6.1 区块链可扩展性
-
问题核心:多轮共识机制导致高通信开销,限制服务规模(可拓展性)
-
影响:制约多参与方协同学习能力
-
应对方案:分片技术/DAG链/子链或侧链/支付通道网络技术 等新架构亟待LLM领域适配
💾 6.2 存储开销
-
双重压力:全网冗余备份 + LLM海量数据
-
创新方向:▸ 区块链分层存储架构限定存储层膨胀▸ 分布式编码技术降冗余▸ 云链协同优化方案
⚡ 6.3 能耗管理
-
能耗来源:区块链共识、存储 + LLM大规模训练
-
降耗思路:
-
节能共识算法设计
-
低能耗广播协议
-
针对区块链的存储结构设计
-
大模型训练框架优化,并使用更强大硬件
-
🚀 6.4 协作效率
-
瓶颈:链上验证与模型训练的复合成本
-
突破方向:▶ 区块链-机器学习联合共识机制▶ 智能合约效能优化▶ 验证机制▶张量/管道并行化/量化方法加速训练
📶 6.5 异构部署场景
-
通信挑战:混合有/无线网络动态环境
-
研究方向:
-
无线区块链网络建模
-
动态客户端的共识容错机制
-
异构通信质量保障
-
🧠 6.6 模型可解释性
-
核心矛盾:模型性能提升与"黑箱"困境
-
两难:
-
涌现能力无理论支持
-
安全推理机制缺失
-
-
研究路径:多模态数据溯源验证框架
🧩 延伸挑战(当在LLM中使用联邦学习(FL)或分布式机器学习(ML)以扩大训练数据规模并实现更好的决策结果时,数据异构性通常成为一个挑战。)
💡 6.7 数据异构性
-
四维偏差:标签/特征/质量/数量(不同客户端之间的数据差异,客户端的局部优化目标与全局优化目标不一致,达到局部最优而非全局最优)
-
优化策略:客户端分组/特征蒸馏/将平滑模式改为并行训练/模型组件自注意力
📊 6.8 性能评估体系
-
学习语料可靠性:决定内容输出质量
-
训练三重验证:效率/成本/安全
-
生成内容三要素:可靠性+可追溯性+跨平台验证
-
待解决:统一评估指标缺位
🌟 核心结论
本文提出BC4LLM,一种基于区块链的大语言模型(LLM),通过区块链技术实现LLM全流程安全🔒:
-
可靠语料库:确保训练数据来源可信;
-
安全训练流程:规避模型篡改风险;
-
生成内容可追踪:实现输出内容的可验证性。
该框架为可信AI的实现提供技术路径🚀。
🔄 技术逻辑与创新
-
背景融合:整合区块链、LLM及区块链赋能AI的交叉技术;
-
设计思路:利用区块链属性(去中心化、不可篡改)弥补LLM的隐私漏洞与数据不确定性;
-
扩展性:提出BC4LLM在前沿通信网络中的潜在应用场景,如动态频谱共享、语义通信优化、网络资源分配📡。
🚧 挑战与展望
-
技术瓶颈
-
区块链与LLM的性能协同优化;
-
分布式训练的高效性保障;
-
可信激励机制设计。
-
-
未来价值
-
为可信AI提供技术范式参考;
-
启发新一代LLM的安全架构设计💡。
注:随着ChatGPT等技术普及,LLM安全需求将持续深化,BC4LLM或成关键解决方案。
-