TTPLA数据集是一个专门为输电塔(Transmission Tower, TT)和电力线(Power Line, PL)的检测与分割而设计的航空影像数据集。以下是关于TTPLA数据集的详细介绍:
随着智能电网和无人机技术的快速发展,从航拍图像中准确检测和分割输电塔和电力线变得尤为重要。这对于保护电网安全和低空无人机安全至关重要。
TTPLA数据集旨在为从事对象检测和分割工作的计算机视觉研究人员提供高质量的训练和测试数据。
数据特点:
图像数量与分辨率:TTPLA数据集包含1,100张分辨率为3,840×2,160像素的图像。
标注信息:数据集中包含了手动标记的8,987个输电塔和电力线实例,以支持像素级别的检测和分割任务。
多样性:数据集采用了不同相机和焦距在多种环境下拍取的输电塔和输电线图像,包括24小时内的不同光照和天气条件。这使得数据集更加真实且具有挑战性。
背景优化:与传统的只包含输电塔或电力线的数据集相比,TTPLA数据集将背景噪声问题进行了优化,更加关注输电塔和输电线的图像区域。
数据格式:
数据集以ZIP格式提供,包含原始图像文件和相应的标注文件。原始图像文件主要为JPG和PNG格式。
标注文件采用COCO(Common Objects in Context)格式,这是一种流行的对象检测和分割任务的数据标注格式。
数据划分:
数据集被划分为训练集、验证集和测试集三个部分,分别对应train.txt、validate.txt和test.txt文件中的图像名称列表。
应用场景:
TTPLA数据集可用于输电塔和电力线的检测、分割、定位等计算机视觉任务。
它可以作为深度学习模型的训练和测试数据,帮助研究人员开发更加准确和鲁棒的输电塔和电力线检测算法。
从航空图像中准确检测和分割输电塔(TTs)和电力线(PLs)对于保护电网安全和低空无人机安全起着关键作用。同时,TTs和PLs的航空图像对从事对象检测和分割工作的计算机视觉研究人员提出了许多新挑战——电力线长而细,可能与背景颜色相似;输电塔可能有各种形状,并且很可能由各种稀疏度的线结构组成;背景场景、照明和物体大小在不同的图像之间可能会有很大的差异。在本文中,我们收集并发布了一个新的TT/PL航空图像(TTPLA)数据集,该数据集包含1100张分辨率为3840×2160像素的图像,以及手动标记的8987个TTs和PLs实例。我们为TTPLA中的图像收集、注释和标记制定了新策略。与其他相关数据集不同,TTPLA除了检测和语义分割外,还支持实例分割的评估。为了在TTPLA上建立检测和分割任务的基线,我们报告了几种最先进的深度学习模型在我们数据集上的性能。TTPLA数据集可通过此https URL公开访问。
论文地址:https://arxiv.org/abs/2010.10032
数据集地址:https://github.com/r3ab/ttpla_dataset