随着Deepseek的横空出世,大模型的应用广度与深度得到了进一步的拓展,大模型技术凭借数据处理、深度学习和推理能力,推动城市治理向智能化、精细化、科学化转型。如DeepSeek与杭州市合作开发的交通态势预测模型,基于时空注意力机制,将早高峰拥堵预测误差从15%降至7%,信号灯动态调控响应时间缩短至500毫秒。大模型推动城市治理数字化转型进入新阶段。
早在2024年7月,中国电信研究院、中关村智慧城市产业技术创新战略联盟等机构联合发布了《大模型赋能城市治理数字化转型》研究报告,系统梳理了大模型在城市治理中的关键路径与场景,讨论了当前的问题和挑战,并给出了建议。现就该报告的核心观点做出解读:
报告总结了大模型赋能城市治理的四大路径,能够有效应对城市治理过程中日益增长的复杂性和多样性需求。
数据整合与分析:跨领域数据融合(交通、环境、安全等),实现全面感知与实时分析。
智能预测与决策:基于历史与实时数据预测趋势,辅助科学决策(如交通流量、灾害预警)。
自动化流程优化:简化重复性任务(如智能客服、工单分拨),提升效率30%以上。
跨领域协同治理:打破部门壁垒,促进资源共享(如纽约市整合商铺监控数据)。
报告列举了大模型在城市治理中的应用场景,涵盖了民情感知、基层治理、公共安全、交通管理、城市规划以及环境保护等多个领域。
民情感知:分析工单、社交媒体数据,实时捕捉民众情绪与经济堵点。预测情绪变化,预警苗头事件。辅助政策动态调整,提升民众满意度,防范风险升级。
基层治理:语义分析+数据统计,识别重点人群/事件/地区,支撑政府科学决策。为网格员提供实时知识问答、自动化事件分拨与应急指导,降低工作负荷,提升处置效率。
公共安全:视频分析实时识别异常行为,结合多源数据预警。挖掘城市运行数据,生成应急预案与处置建议。强化主动防御能力,降低危机扩散概率。
交通管理:预测流量优化信号灯配时,引导车辆绕行。违法识别、智能停车系统与自适应信号灯,全链路优化出行效率,降低拥堵率与事故率。
城市规划:整合地理、人口、经济数据生成多套规划方案。深度学习预测城市发展趋势,提供可视化决策工具。缩短规划周期,提升方案适配性与预测精准度。
环境保护:传感器+卫星遥感构建智能监测系统,预警污染事件。分析空气质量、水质等数据,优化资源调度。提升环境治理精准度,推动可持续发展。
报告通过系统剖析大模型在政务服务热线平台、公共安全治理、气候与环境保护等领域的典型应用,展示了其在提升政府服务和治理现代化方面的潜力和影响,为政府和企业开展相关应用建设提供有价值的参考。
最后,报告分析了大模型赋能城市治理数字化转型所面临的挑战包括政策滞后、技术瓶颈、数据安全和人才缺口,并提出了涉及政策法规、技术融合、数据治理等相应的建议。