我盯着屏幕上跳动的游戏像素,手里的咖啡已经凉了三个小时。当自己训练的AI第一次在《Pong》游戏中打出11:0的碾压局时,那种成就感堪比亲手打通了魂系游戏。今天咱们就用Stable Baselines3这个神器,从零开始打造一个能打Atari游戏的AI模型。
安装配置避坑指南
打开终端输入pip install stable-baselines3[extra]
时,别急着按回车。注意这里必须安装带[extra]
的版本才能支持Atari环境,这个细节坑过我整整一个下午。安装完成后顺手把opencv-python
也装上,图像预处理时会用到。
推荐在Colab笔记本里跑实验,用免费GPU加速训练过程。本地训练的话,记得关掉PyTorch的CUDA加速,否则显存分分钟爆炸:
import torch
print(torch.cuda.is_available()) # 检查GPU是否可用
游戏环境搭建技巧
用gym
创建环境时,新手容易忽略帧堆叠的重要性。Atari游戏的单帧画面就像连环画缺页——根本看不出球往哪飞。看这段标准操作:
from stable_baselines3.common.atari_wrappers import *
env = gym.make("PongNoFrameskip-v4")
env = WarpFrame(env) # 84x84灰度化
env = MaxAndSkipEnv(env, skip=4) # 每4帧跳1帧
env = FrameStack(env, 4) # 堆叠4帧画面
这些预处理能让训练速度提升5倍不止。特别提醒:不同Atari游戏的最佳跳