人工智能 (AI) 旨在创造能够展现智能行为的计算机系统,而机器学习 (ML) 是实现这一目标的关键方法 。机器学习专注于开发能够从大量数据中学习并识别模式的模型,从而在面对新数据时进行预测或决策,而无需进行明确的编程 . 深度学习 (DL) 作为机器学习的一个子领域,利用多层人工神经网络来处理和学习复杂的数据表示 . 人工智能模型架构是这些模型的结构框架,它决定了模型如何处理信息、从数据中学习以及生成预测或内容 . 模型架构的设计对于人工智能系统的性能至关重要,它直接影响着模型在特定任务上的效率和有效性 . 因此,对于研究人员、从业人员以及任何参与人工智能系统开发和部署的人员来说,理解这些架构至关重要 . 选择合适的模型架构需要深入理解其设计目的、适用场景以及如何适应待解决问题的具体需求,这包括考虑数据集的大小和结构、可用的计算资源以及问题的复杂性 .
传统机器学习是人工智能的一个重要分支,其模型通过学习数据中的模式来实现预测或决策,而无需针对每个特定任务进行显式编程 . 这些模型的核心在于其能够从大量数据中学习,识别不同数据类型中的模式,并最终对测试数据做出预测 . 传统机器学习模型的一些关键特性包括:数据驱动的决策制定、模式识别、预测能力、自动化和适应性 . 这些特性使得传统机器学习模型能够广泛应用于各种领域。一些具有代表性的传统机器学习模型包括:支持向量机 (SVM),常用于分类和回归任务 ;决策树,使用树状图进行预测 ;线性回归,用于预测连续值 ;逻辑回归,主要用于二元分类任务 ;随机森林,一种集成学习方法 ;K 近邻 (KNN),一种基于实例的学习算法 ;朴素贝叶斯,一种基于贝叶斯定理的概率分类器 ;线性判别分析 (LDA),一种降维技术,也可用于分类 ;以及学习向量量化 (LVQ)ÿ