CH 1806 Matrix (进阶指南,字符串hash)

算法竞赛进阶指南中的91页介绍了如何使用字符串哈希值进行矩阵匹配。通过计算大矩阵中所有尺寸为a*b的子矩阵哈希值并存入unordered_set,对后续的查询操作判断小矩阵是否存在于大矩阵中。
摘要由CSDN通过智能技术生成

算法竞赛进阶指南,91页,字符串hash

本题要点:
0、 字符串哈希值,可以有一个字符串的所有的前缀字符串相减得到
h[R] - h[L - 1] * p_pow[R - L + 1];
1、 求某一个小矩阵 (a * b )是否在 一个大矩阵(n * m)中匹配,求出大矩阵中所有的尺寸为 a * b 的子矩阵
的哈希值, 放在一个 unordered_set 中, 然后后面的 q 次查询,每次在集合中查找是否存在该矩阵的哈希值

2、 当前小矩阵s 从第i行, 第j列开始, 也就是
行数: [i, i + a - 1]
列数: [j, j + b - 1]

下一个矩阵s1, 行列的范围(加深s1 在s 的下面, s1 和 s 的列数相同)
行数: [i + 1, i + a]
列数:	[j, j + b - 1]

在 列的范围是 [j, j + b - 1], 假设:
h[i + a]:	第 i + a 行的哈希值 
h[i]:		第i行的哈希值 

s1 = s * p_pow[b] + h[i + a] - h[i] * p_pow[a * b]
#include <cstdio>
#include <unordered_set>
#include <cstring>
#include <iostream>
using namespace std;
const int MaxA = 110;
const int MaxN = 1010;
int n, m, a, b, query, p = 131;
char str[MaxN];
unsigned long long pre[MaxN][MaxN];	//各个前缀 的哈希值
unsigned long long p_pow[MaxN * MaxN];
unordered_set<unsigned long long> ans;

unsigned long long calc(unsigned long long f[], int L, int R)
{
	return f[R] - f[L - 1] * p_pow[R - L + 1];
}

int main()
{
	scanf("%d%d%d%d", &n, &m, &a, &b);
	for(int i = 1; i <= n; ++i)
	{
		scanf("%s", str + 1);
		pre[i][0] = 0;
		for(int j = 1; j <= m; ++j)
		{
			pre[i][j] = pre[i][j - 1] * p +str[j] - '0';
		}
	}
	p_pow[0] = 1;
	for(int i = 1; i <= n * m; ++i)
	{
		p_pow[i] = p_pow[i - 1] * p;
	}
	// 把所有的 a * b 大小的矩阵的哈希值放到 set 中
	for(int j = 1; j + b - 1 <= m; ++j)	// 先固定列, 改变行,计算所有 可能的 a * b 大小的矩阵
	{
		unsigned long long s = 0;
		int L = j, R = j + b - 1;
		for(int i = 1; i <= n; ++i)
		{
			s = s * p_pow[b] + calc(pre[i], L, R);
			if(i - a > 0)
			{
				s -= p_pow[a * b] * calc(pre[i - a], L, R);
			}
			if(i >= a)
			{
				ans.insert(s);
			}
		}
	}
	scanf("%d", &query);
	while(query--)
	{
		unsigned long long s = 0;
		for(int i = 1; i <= a; ++i)
		{
			scanf("%s", str);
			for(int j = 0; j < b; ++j)
			{
				s = s * p + str[j] - '0';
			}
		}
		if(ans.find(s) == ans.end())
		{
			printf("0\n");
		}else{
			printf("1\n");
		}
	}
	return 0;
}

/*
3 3 2 2
111
000
111
3
11
00
11
11
00
11
*/

/*
1
0
1
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值