第二部分 字符串算法 (第二章 字符串hash和hash表) 例题

例题一:字符串哈希link

在这里插入图片描述
在这里插入图片描述
思路:
字符串hash模板题,
按照上述的字符串hash求出字符创的hash值,
然后进行排序即可求出答案。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<queue>
#define fre(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
#define ll long long

using namespace std;

const int MAX = 2147483647;
const int N = 1e9 + 7;
const int Mod = 13331;
int n, ans;
string s, hash[Mod + 100]; 
bool h()
{
	int len = s.size();
	ll num = 0;
	for(int i = 0; i <= len; i++) num = num * 64 + int(s[i]), num %= N;
	num %= Mod;
	if(hash[num] == s) return 1;
	if(hash[num] != s && hash[num] != "")
	{
		int i = num + 1;
		i %= Mod;
		while(i != num)
		{
			if(hash[i] == s) return 1;
			if(hash[i] == "") {hash[i] = s; return 0;}
			i = (i + 1) % Mod;
		}
	}
	hash[num] = s;
	return 0;
}
int main()
{
	//fre();
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
	{
		cin >> s;
		if(!h()) ans++;
	}
	printf("%d", ans);
	return 0;
}

例题二:回文子串link

在这里插入图片描述
在这里插入图片描述

思路:
我们考虑采用二分,
求出回文子串的的一边的长度。

首先用hash函数预处理出每一段字符串的hash值。

接着关心二分的分类讨论:

  1. 奇回文串A[1~m],其中M为奇数,
    并且A[ 1 ∼ M + 1 2 1\sim\frac{M+1}2 12M+1] = reverse(A[ M + 1 2 + 1 ∼ m \frac{M+1}2+1 \sim m 2M+1+1m]).
    (reverse(A)表示把字符串A倒过来)

  2. 偶回文串A[ 1 ∼ m 1 \sim m 1m], 其中M为偶数,
    并且A[ 1 ∼ M 2 1 \sim \frac{M}2 12M] = reverse( A [ m 2 + 1 ∼ m ] A[\frac{m}2+1 \sim m] A[2m+1m]).

#include<cstdio>
#include<cstring>
#include<iostream>
#define ull unsigned long long

using namespace std;

int n, l, r, mid, ans, number;
ull times[1000002], zheng[1000002], fan[1000002];
char c[1000002];

int main() 
{
	scanf("%s", c + 1);
	n = strlen(c + 1);
	while (c[1] != 'E' || c[2] != 'N' || c[3] != 'D') 
	{
		number++;
		ans = 1; 
		memset(times, 0, sizeof(times));
		memset(zheng, 0, sizeof(zheng));
		memset(fan, 0, sizeof(fan));
		times[0] = 1ull;
		for (int i = 1, j = n; i <= n, j >= 1; i++, j--)  //预处理
		{
			times[i] = (times[i - 1] * 131ull);
			zheng[i] = (zheng[i - 1] * 131ull + c[i] - 'a');	
			fan[j] = (fan[j + 1] * 131ull + c[j] - 'a');
		}
		for (int i = 1; i <= n; i++) 
		{
			l = 0;
			r = n;
			while (l <= r) 
			{
				mid = (l + r) >> 1;
				if (i - mid < 1 || i + mid > n) //奇数回文
				{
					r = mid - 1;
					continue;
				}
				if (zheng[i] - zheng[i - mid - 1] * times[mid + 1] == fan[i] - fan[i + mid + 1] * times[mid + 1]) 
				{
					l = mid + 1;
					ans = max(ans, mid * 2 + 1);
				}
				else r = mid - 1;
			}
			
			l = 0;
			r = n;
			while (l <= r) //偶数回文
			{
				mid = (l + r) >> 1;
				if (i - mid + 1 < 1 || i + mid > n)
				{
					r = mid - 1;
					continue;
				}
				if (zheng[i] - zheng[i - mid] * times[mid] == fan[i + 1] - fan[i + mid + 1] * times[mid]) 
				{
					l = mid + 1;
					ans = max(ans, mid * 2);
				}
				else r = mid - 1;
			}
		}
		
		printf("Case %d: %d\n", number, ans);
		memset(c, 0, sizeof(c));
		scanf("%s", c + 1);
		n = strlen(c + 1);
	}
	return 0;
}

随便自己在网上看到了一篇题解,
讲到了著名的马拉车算法,大家可以去康康。

例题三:对称正方形link

在这里插入图片描述在这里插入图片描述

思路:

首先,很明显要用 hash 来做,

因为是矩形,是二维的。

那就要用二维的 hash。

现在来讲一下二维hash:

一维hash是把一个字符串或一个序列用一个整数表示。

二维hash则是把一个矩阵用一个整数表示。

我们两次 H a s h Hash Hash ,第一次,我们横着 H a s h Hash Hash :

for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= m; j++)
	 	hash[i][j] = hash[i][j - 1] * base_1 + a[i][j];

此时的 H a s h ( i , j ) Hash(i, j) Hash(i,j) 表示第 i i i 行第 j j j 个数的 H a s h Hash Hash 值,

此时我们进行第二次 H a s h Hash Hash

	for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= m; j++)
	 	hash[i][j] = hash[i - 1][j] * base_2;

若我们要查询左上角为 ( x , y ) (x, y) (x,y)

右下角为 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 的矩阵的 H a s h Hash Hash值就为:

h a s h ( x 1 , y 1 ) − h a s h ( x − 1 , y 1 ) ∗ b a s e 2 x 1 − x + 1 − h a s h ( x 1 , y − 1 ) ∗ b a s e 1 y 1 − y + 1 + h a s h ( x − 1 , y − 1 ) ∗ b a s e 2 x 1 − x + 1 ∗ b a s e 1 y 1 − y + 1 hash(x_1,y_1)-hash(x-1, y_1) * base_2^{x_1-x+1}-hash(x_1,y-1)*base_1^{y_1-y+1}+hash(x-1,y-1)*base_2^{x_1-x+1}*base_1^{y_1-y+1} hash(x1,y1)hash(x1,y1)base2x1x+1hash(x1,y1)base1y1y+1+hash(x1,y1)base2x1x+1base1y1y+1

o k ok ok ,回到正题。。。

那你考虑一下一个左右上下对称的正方形要满足什么特点。

那很明显,对称就是按着对称轴翻转过来它还是一样的。

那就是这个正方形左右反过来,

上下反过来所形成的图形和原来都一样。

那你就构造出最大的矩形的两个翻转图形,

然后看看原来的位置应该变道哪里。

原来是 [ x , y ] [x,y] [x,y] (假设),

那左右翻转就是 [ x , m − y + 1 ] [x,m−y+1] [x,my+1]

上下翻转就是 [ n − x + 1 , y ] [n−x+1,y] [nx+1,y]

那我们再看矩形翻转之后的位置变化。

假设原来是 [ l x , l y ] ∼ [ r x , r y ] [lx,ly]\sim[rx,ry] [lx,ly][rx,ry]

那左右翻转的就是 [ l x , m − r y + 1 ] ∼ [ r x , m − r x + 1 ] [lx,m-ry+1]\sim[rx,m-rx+1] [lx,mry+1][rx,mrx+1]

上下翻转的就是 [ n − r x + 1 , l y ] ∼ [ n − l x + 1 , l y ] [n-rx+1,ly]\sim[n-lx+1,ly] [nrx+1,ly][nlx+1,ly]

依题意,

得出一个结论:当一个正方形合法时,

以这个正方形的中心且比它小的正方形也合法,

故我们可以枚举中心点,

二分出最大的合法正方形的边长 L L L

贡献为 [ L + 1 2 ] [\frac{L+1}2] [2L+1]

接着考虑到中心点不一定是矩阵中的数,

我们需要进行两次遍历。

最后的答案还得加上 n ∗ m n * m nm

#include<cstdio>
#include<iostream>
#define di1 1000000007ull
#define di2 1000000009ull
#define ull unsigned long long

using namespace std;

int n, m, a[1001][1001], matrix_up[1001][1001], matrix_left[1001][1001], l, r, mid, ans, tot, lx, ly, tmp;
ull hash[1001][1001], times1[1001], times2[1001], hash_up[1001][1001], hash_left[1001][1001], hash1, hash2, hash3;

bool ch(int rx, int ry, int dis) 
{
	lx = rx - dis + 1;
	ly = ry - dis + 1;
	hash1 = hash[rx][ry] - hash[rx][ly - 1] * times1[dis] - hash[lx - 1][ry] * times2[dis] + hash[lx - 1][ly - 1] * times1[dis] * times2[dis];
	
	tmp = rx;
	rx = n - (rx - dis);
	lx = rx - dis + 1;
	ly = ry - dis + 1;
	hash2 = hash_up[rx][ry] - hash_up[rx][ly - 1] * times1[dis] - hash_up[lx - 1][ry] * times2[dis] + hash_up[lx - 1][ly - 1] * times1[dis] * times2[dis];
	
	rx = tmp;
	ry = m - (ry - dis);
	lx = rx - dis + 1;
	ly = ry - dis + 1;
	hash3 = hash_left[rx][ry] - hash_left[rx][ly - 1] * times1[dis] - hash_left[lx - 1][ry] * times2[dis] + hash_left[lx - 1][ly - 1] * times1[dis] * times2[dis];
	
	if (hash1 == hash2 && hash1 == hash3) return 1;
	return 0;
}

int main() 
{
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++)
	 for (int j = 1; j <= m; j++)
	 {
		scanf("%d", &a[i][j]);
		matrix_up[n - i + 1][j] = a[i][j];
		matrix_left[i][m - j + 1] = a[i][j];
	 }
	times1[0] = times2[0] = 1ull;
	for (int i = 1; i <= n; i++) times1[i] = times1[i - 1] * di1;
	for (int i = 1; i <= m; i++) times2[i] = times2[i - 1] * di2; 
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++) 
		{
			hash[i][j] = hash[i][j - 1] * di1 + a[i][j];
			hash_up[i][j] = hash_up[i][j - 1] * di1 + matrix_up[i][j];
			hash_left[i][j] = hash_left[i][j - 1] * di1 + matrix_left[i][j];
			
		}
		times1[i] = times1[i - 1] * di1;
	}
	for (int i = 1; i <= n; i++) 
	{
		for (int j = 1; j <= m; j++) 
		{
			hash[i][j] += hash[i - 1][j] * di2;
			hash_up[i][j] += hash_up[i - 1][j] * di2;
			hash_left[i][j] += hash_left[i - 1][j] * di2;
		}
	}
	for (int i = 1; i <= n; i++)
	 for (int j = 1; j <= m; j++) 
	 {
		ans = 0, l = 1,	r = min(min(i, n - i + 1), min(j, m - j + 1));
		while (l <= r) 
		{
			mid = (l + r) >> 1;
			if (i - mid + 1 < 1 || i + mid - 1 > n || j - mid + 1 < 1 || j + mid - 1 > m) 
			{
				r = mid - 1;
				continue;
			}		
			if (ch(i + mid - 1, j + mid - 1, mid * 2 - 1)) ans = mid, l = mid + 1;
			else r = mid - 1;
		}
		tot += ans;
		ans = 0, l = 1, r = min(min(i, n - i), min(j, m - j));
		while (l <= r) 
		{
			mid = (l + r) >> 1;
			if (i - mid + 1 < 1 || i + mid > n || j - mid + 1 < 1 || j + mid > m) 
			{
				r = mid - 1;
				continue;
			}
			if (ch(i + mid, j + mid, mid * 2)) ans = mid, l = mid + 1;
			else r = mid - 1;
		}
		tot += ans;
	 }
	printf("%d", tot);
	return 0;
}

例题四:单词背诵link

在这里插入图片描述
在这里插入图片描述

思路:
这道题思路比较简单,只用将要背单词用hash存储信息,
然后我们在后来的操作中进行匹配就行了。
那具体操作呢?
考虑使用尺取法。
类似毛毛虫爬动,时间复杂度可以得到O(n)的好成绩。

尺取法:顾名思义,像尺子一样取一段,借用挑战书上面的话说,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。尺取法比直接暴力枚举区间效率高很多,尤其是数据量大的时候,所以说尺取法是一种高效的枚举区间的方法,是一种技巧,一般用于求取有一定限制的区间个数或最短的区间等等。当然任何技巧都存在其不足的地方,有些情况下尺取法不可行,无法得出正确答案,所以要先判断是否可以使用尺取法再进行计算。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ull unsigned long long
#define mi 131ull

using namespace std;

struct hhash {
	ull hash;
	int num;
}hash[1001];
int n, m, size, ans, place[100001], l, r, mid, num, in[1001], answer;
char rem[1001][14], pas[100001][14];
bool have[1001];
ull thash;

bool cmp(hhash x, hhash y) {
	return x.hash < y.hash;
}

int getplace() {//通过二分找到要背的单词种是否有这个 hash 值
	l = 0;
	r = n;
	while (l <= r) {
		mid = (l + r) >> 1;
		if (hash[mid].hash > thash) {
			r = mid - 1;
		}
		else if (hash[mid].hash < thash) l = mid + 1; 
			else return hash[mid].num;
	}
	return -1;
}

int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%s", &rem[i]);
		size = strlen(rem[i]);
		hash[i].num = i;//记录原有的位置
		hash[i].hash = rem[i][0] - 'A' + 1;
		for (int j = 1; j < size; j++)
			hash[i].hash = hash[i].hash * mi + rem[i][j] - 'A' + 1;//得到hash值
	}
	
	sort(hash + 1, hash + n + 1, cmp);//排序,让后面可以二分查找是否是这个字符串
	
	scanf("%d", &m);
	for (int i = 1; i <= m; i++) {
		scanf("%s", &pas[i]);
		size = strlen(pas[i]);
		thash = pas[i][0] - 'A' + 1;
		for (int j = 1; j < size; j++)
			thash = thash * mi + pas[i][j] - 'A' + 1;
		place[i] = getplace();
		if (place[i] != -1 && !have[place[i]]) {
			ans++;
			have[place[i]] = 1;
		}
	}
	
	printf("%d\n", ans);
	
	if (!ans) {
		printf("0");
		return 0;
	}
	
	l = 1;
	answer = 2147483647;//尺取法得到最小长度
	for (int i = 1; i <= m; i++) {
		if (place[i] != -1) {
			if (!in[place[i]]) {
				num++;
			}
			in[place[i]]++;
			
			if (num == ans) {
				while (l <= i && num == ans) {
					if (place[l] != -1) {
						in[place[l]]--;
						if (!in[place[l]]) {
							num--;
							answer = min(answer, i - l + 1);
						}
					}
					l++;
				}
			}
		}
	}
	
	printf("%d", answer);
	
	return 0;
}

例题五:子正方形 link

在这里插入图片描述
在这里插入图片描述

思路:
考虑将二维矩阵求出hash值,
早在例三时讲过,
这里就不在赘述了。

记得在最大正方形中讲过然后在一个矩阵中枚举正方形。
此题类似,
考虑分别在模式矩阵和匹配矩阵中枚举正方形右下角,
比较两者矩阵范围,
求出最大的正方形边长,即:
m i n ( m i n ( s x , t x ) , m i n ( s y , t y ) ) min(min(sx, tx) , min(sy, ty)) min(min(sx,tx),min(sy,ty))
接着考虑用二分求出最大可行边长,
最后与final_ans取较大值输出。

#include <cstdio>
#include <iostream>
#define ull unsigned long long
#define base 131ull
#define base1 13331ull
using namespace std;
const int N = 60;
int n, a[N][N], b[N][N], ans, final_ans;
ull hash_a[N][N], hash_b[N][N], t1[N], t2[N]; 

bool check(int sx, int sy, int tx, int ty, int mid) 
{
	return 
	(hash_a[sx][sy] - hash_a[sx][sy - mid] * t1[mid] - hash_a[sx - mid][sy] * t2[mid] + hash_a[sx - mid][sy - mid] * t1[mid] * t2[mid]) 
	== 
	(hash_b[tx][ty] - hash_b[tx][ty - mid] * t1[mid] - hash_b[tx - mid][ty] * t2[mid] + hash_b[tx - mid][ty - mid] * t1[mid] * t2[mid])
	;
}

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <= n; i++) 
	 for(int j = 1; j <= n; j++)
		scanf("%d", &a[i][j]);
	for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= n; j++)
		scanf("%d", &b[i][j]);
	t1[0] = t2[0] = 1ull;
	for(int i = 1; i <= n; i++) t1[i] = t1[i - 1] * base, t2[i] = t2[i - 1] * base1;
	for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= n; j++)
	 {
	 	hash_a[i][j] = hash_a[i][j - 1] * base + a[i][j];
	 	hash_b[i][j] = hash_b[i][j - 1] * base + b[i][j];
	 }
	for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= n; j++)
	  {
	  	hash_a[i][j] += hash_a[i - 1][j] * base1;
	  	hash_b[i][j] += hash_b[i - 1][j] * base1;
	  }
	for(int sx = 1; sx <= n; sx++)
	 for(int sy = 1; sy <= n; sy++)
	  for(int tx = 1; tx <= n; tx++)
	   for(int ty = 1; ty <= n; ty++)
	   {
	   		int l = 0, r = min(min(sx, tx) , min(sy, ty)), mid;
	   		ans = 0;
	   		while(l <= r)
	   		{
	   			mid = (l + r) >> 1;
	   			if(check(sx, sy, tx, ty, mid)) ans = mid, l = mid + 1;
				else r = mid - 1;
			}
			final_ans = max(final_ans, ans);
	   }
	printf("%d\n", final_ans);
	return 0;
}
<think>嗯,用户想知道如何遍历哈希,特别是需要示例代码。首先,我应该回忆哈希的基本结构,然后考虑不同编程语言中的实现方式。用户提到的引用中有提到C++的unordered_mapunordered_set,所以可能需要重点放在C++上,但或许也需要其他语言如Python或Java的例子? 首先,哈希是一种键值对的数据结构,遍历的话通常需要访问每个键或值。在C++中,使用unordered_map的话,可以用迭代器来遍历。比如,用begin()end()方法,或者基于范围的for循环。用户可能需要具体的代码示例,比如如何逐个取出键值。 然后,Python中的字典也是哈希实现的,遍历起来更简单,可以直接用for循环遍历键、值或者键值对。Java的话,可以用entrySet或者keySet来遍历。所以可能需要分别给出不同语言的例子,但用户提供的引用中有C++的代码,所以可能优先C++的示例。 另外,用户的问题中引用的资料提到哈希用于快速查找,所以遍历可能不是哈希的主要用途,但有时候确实需要。要注意在遍历时,哈希的无序性,比如在C++中unordered_map的元素顺序是不确定的,这红黑树实现的map不同。这一点需要提醒用户,避免误解。 还要确保代码的正确性,比如C++中使用auto关键字简化迭代器的声明,或者Python中使用items()方法。同时,代码注释可能会帮助用户理解每个步骤的作用。比如,在C++示例中,使用范围for循环遍历键值对,或者使用迭代器遍历。 另外,用户可能想知道时间复杂度,遍历哈希的时间复杂度是O(n),因为需要访问每个元素一次。这哈希的查找不同,查找是O(1),但遍历需要线性时间。 还需要注意,在遍历时是否有修改哈希的操作,这可能导致迭代器失效,特别是在C++中,如果在遍历过程中插入或删除元素,可能会引发问题。不过用户的问题可能只是基础遍历,所以暂时不需要深入讨论这个问题。 总结步骤应该是:解释哈希遍历的基本概念,然后分语言给出示例代码,强调不同语言中的方法,最后可能提醒注意事项,比如无序性、时间复杂度等。同时,根据引用中的资料,引用相关的部分,比如引用[1]提到哈希在C++中的实现,所以C++部分的代码可以引用该部分。</think>### 如何遍历哈希哈希(如 C++ 的 `std::unordered_map`、Python 的字典等)的遍历通常涉及访问所有键值对。由于哈希以无序方式存储数据[^3],遍历顺序不固定。以下是不同语言的实现方法: --- #### **C++ 示例** 在 C++ 中,使用 `std::unordered_map` 的迭代器或范围循环遍历: ```cpp #include <iostream> #include <unordered_map> int main() { std::unordered_map<std::string, int> hashTable = {{"Alice", 25}, {"Bob", 30}, {"Charlie", 20}}; // 方法1:范围循环(C++11 及以上) for (const auto& pair : hashTable) { std::cout << "Key: " << pair.first << ", Value: " << pair.second << std::endl; } // 方法2:迭代器 for (auto it = hashTable.begin(); it != hashTable.end(); ++it) { std::cout << "Key: " << it->first << ", Value: " << it->second << std::endl; } return 0; } ``` --- #### **Python 示例** Python 字典的遍历更简洁: ```python hash_table = {"Alice": 25, "Bob": 30, "Charlie": 20} # 遍历键值对 for key, value in hash_table.items(): print(f"Key: {key}, Value: {value}") # 仅遍历键 for key in hash_table: print(f"Key: {key}") # 仅遍历值 for value in hash_table.values(): print(f"Value: {value}") ``` --- #### **Java 示例** Java 中通过 `entrySet()` 或 `keySet()` 遍历 `HashMap`: ```java import java.util.HashMap; import java.util.Map; public class Main { public static void main(String[] args) { HashMap<String, Integer> hashMap = new HashMap<>(); hashMap.put("Alice", 25); hashMap.put("Bob", 30); hashMap.put("Charlie", 20); // 遍历键值对 for (Map.Entry<String, Integer> entry : hashMap.entrySet()) { System.out.println("Key: " + entry.getKey() + ", Value: " + entry.getValue()); } // 仅遍历键 for (String key : hashMap.keySet()) { System.out.println("Key: " + key); } } } ``` --- ### **关键注意事项** 1. **无序性**:哈希遍历顺序不固定,与插入顺序无关。 2. **时间复杂度**:遍历所有元素的时间复杂度为 $O(n)$,$n$ 为元素数量。 3. **线程安全**:遍历时修改哈希可能导致异常(如 Java 的 `ConcurrentModificationException`)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值