洛谷 P1313 计算系数(算法竞赛进阶指南,快速幂,组合数,乘法逆元)

算法竞赛进阶指南,171 页,快速幂,组合数,乘法逆元

本题要点:
1、通过二项式定理,求出 x^n * y^m 项的系数是 C[n][k] * a^n * b^m.

2、幂 的计算 a^n 直接使用快速幂计算, 假设得到结果是 ans;
3、组合数 C[n][k] 的计算:
先计算 k! , 再计算阶乘 n! * (k - n)! 模p的逆元。 p是素数,那么
欧拉定理有: t^(p - 1)=1(mod p), 也就是t 模p的逆元是 t^(p - 2)。
因此 n! * (k - n)! 模p的逆元 是 (n! * (k - n)!) ^ (p - 2)。
假设得到结果是 t1, 最后将 ans * t1 再模 p即可。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const long long mod = 10007;
long long a, b, k, n, m;

long long quick_pow(long long x, long long y)
{
	long long ans = 1;
	while(y > 0)
	{
		if(y & 1)
		{
			ans = (ans * x) % mod;
		}
		y >>= 1;
		x = (x * x) % mod;
	}
	return ans;
}

void solve()
{
	// c[k][n] * a^n * b^m
	long long ans = 1;
	ans = (ans * quick_pow(a, n)) % mod;
	ans = (ans * quick_pow(b, m)) % mod;
	long long t1 = 1, t2 = 1;
	for(int i = 1; i <= k; ++i)
	{
		t1 = (t1 * i) % mod;
	}
	for(int i = 1; i <= n; ++i)
	{
		t2 = (t2 * i) % mod;	
	}
	for(int i = 1; i <= k - n; ++i)
	{
		t2 = (t2 * i) % mod;	
	}
//	printf("ans = %lld\n", ans);
	t1 = (t1 * quick_pow(t2, mod - 2)) % mod;
//	printf("t1 = %lld\n", t1);
	ans = (ans * t1) % mod;
	printf("%lld\n", ans);
}

int main()
{
	scanf("%lld%lld%lld%lld%lld", &a, &b, &k, &n, &m);
	solve();
	return 0;
}

/*
1 1 3 1 2
*/

/*
3
*/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值