动态规划小结

题目:115. 不同的子序列

 

 

 

 解决思路:动态规划

dp方程表示的含义:s[i] 和t[j] 索引的元素子序列数量

状态方程

dp[i][j]=\left\{\begin{matrix} dp[i-1][j-1]+dp[i-1][j] & while s.charAt(i) == t.charAt(j) & \\ dp[i-1][j] & else & \end{matrix}\right.

状态方程分析:当s[i] == t[j] 时 dp[i][j] = dp[i-1][j-1] + dp[i-1][j];当s[i] != t[j] 时 dp[i][j] = dp[i-1][j]

先看s[i] == t[j] 时,以s = "rara" t = "ra" 为例,当i = 3, j = 1时,s[i] == t[j]。

此时分为2种情况,s串用最后一位的a + 不用最后一位的a。

如果用s串最后一位的a,那么t串最后一位的a也被消耗掉,此时的子序列其实=dp[i-1][j-1]

如果不用s串最后一位的a,那就得看"rar"里面是否有"ra"子序列的了,就是dp[i-1][j]

所以 dp[i][j] = dp[i-1][j-1] + dp[i-1][j]

再看s[i] != t[j] 比如 s = "rarb" t = "ra" 还是当i = 3, j = 1时,s[i] != t[j]

此时显然最后的b想用也用不上啊。所以只能指望前面的"rar"里面是否有能匹配"ra"的

所以此时dp[i][j] = dp[i-1][j]

代码

class Solution {
    public int numDistinct(String s, String t) {
        int m = s.length(), n = t.length();
        //dp[i][j]:s[0-i]与t[0-j]他们的最长子序列为
        int[][] dp = new int[m + 1][n + 1];
        for(int i =0;i<=m;i++){
            dp[i][0] = 1;
        }
        for(int i = 1; i <=m;i++){
            for(int j =1;j<=n;j++){
                if(s.charAt(i-1) == t.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
                }
                else{
                    dp[i][j] = dp[i-1][j];
                }
            }
        }
        return dp[m][n];
    }
}

怎么想到这样状态方程的?

一点个人经验,见过的很多2个串的题,大部分都是dp[i][j] 分别表示s串[0...i] 和t串[0...j]怎么怎么样 然后都是观察s[i]和t[j]分等或者不等的情况 而且方程通常就是 dp[i-1][j-1] 要么+ 要么 || dp[i-1][j]类似的。

类似的题比如有 10. 正则表达式匹配 44. 通配符匹配     72. 编辑距离       1143. 最长公共子序列等等的

题目:1143. 最长公共子序列

 

dp[i][j] 的含义是: 对于 s1[1..i] 和 s2[1..j] ,它们的 最长公共子序列 ⻓度是 dp[i][j]。

状态方程:dp[i][j]=\left\{\begin{matrix} dp[i-1][j-1] + 1 & while text1.charAt(i-1) == text2.charAt(j-1) & \\ max(dp[i-1][j],dp[i][j-1]) & else & \end{matrix}\right.

代码:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int len1 = text1.length(), len2 = text2.length();
        int[][] dp = new int[len1+1][len2+1];
        for(int i = 1;i <= len1;i++){
            for(int j = 1;j <= len2;j++){
                if(text1.charAt(i-1) == text2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else{
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[len1][len2];
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值