Pytorch实现
文章平均质量分 94
Jnchin
这个作者很懒,什么都没留下…
展开
-
【Pytorch】FM推导及其实现
因子分解机(Factorization Machine, FM, 2010年)是由Steffen Rendle提出的一种基于矩阵分解的机器学习算法。最大的特点是易于整合交叉特征、可以处理高度稀疏数据,主要应用在推荐系统及广告CTR预估等领域。数理推导FM的原始的模型方程为:y^(x):=w0+∑i=1nwixi+∑i=1n∑j=i+1n⟨vi,vj⟩xixj\hat{y}(x):=w_0+\sum^n_{i=1}w_ix_i+\sum^n_{i=1}\sum^n_{j=i+1}\left \lang原创 2021-11-15 16:52:30 · 4511 阅读 · 1 评论 -
【Pytorch】prototypical network原型网络小样本图像分类简述及其实现
基本概念小样本学习(Few-Shot Learning, FSL),顾名思义,就是能够仅通过一个或几个示例就快速建立对新概念的认知能力。这对于人类来说很简单,比如一个警察完全可以单凭一张照片就能在茫茫人海中认出犯罪嫌疑人。实现小样本学习的方式也有很多,比如:度量学习、数据增强、预训练模型、元学习等等。元学习(meta learning或learning to learn),对于一族待解决的多个任务,一个算法“如果随着经验和任务数量的增长,在每个任务上的表现得到改进”,则认为该算法能够学习如何学习,我原创 2021-10-04 11:11:01 · 12719 阅读 · 6 评论