机器学习学习笔记
文章平均质量分 91
Jnchin
这个作者很懒,什么都没留下…
展开
-
【炼丹笔记】调参方法总结
参考:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.24.1cd8593aLNK3uJ&postId=95460目前调参方案有:贪心调参参考:https://blog.csdn.net/m0_37893230/article/details/104449166网格调参随即搜索调参贝叶斯调参参考:https://zhuanlan.zhihu.com/p/54030031时间紧,改天再整理完善原创 2021-03-14 12:24:27 · 2756 阅读 · 0 评论 -
K-means算法简单理解
参考《吴恩达机器学习》要解释K-means算法,用图像说明再合适不过了。假设有这么一个无标签数据集,我想将它分成两簇:现在开始执行K-means算法,具体操作如下:第一步,随机生成两点,这两个点就叫做聚类中心即:下图中红色蓝色两个叉叉第二步,进入内循环K-means是一个迭代算法,它每次迭代都会做两件事,一是簇分配,二是移动聚类中心。听不懂没关系,看下面的图就懂了。第一小步,进行簇分配即:遍历每个样本点,看看它是离着红色聚类中心近还是离着蓝的近,若离着红的近就把它归到红色簇中去,原创 2020-09-15 19:19:25 · 1321 阅读 · 0 评论 -
Octave常用操作(三)
目录if条件语句for循环while循环Octave中的函数定义一个函数调用一个函数定义一个多返回值的函数修改Octave的搜索路径if条件语句>>i = 1;>> if i == 1, disp('i is 1');elseif i == 2, %else if 语句disp('i is 2');elsedisp('i is not 1 or 2');...原创 2019-04-09 20:12:57 · 1560 阅读 · 0 评论 -
Octave常用操作(二)
数据绘图>> t = [0:0.01:0.98]; %定义一组数据,从0到0.98,步长为0.01>> y1 = sin(2*pi*4*t); %定义一个正弦函数值的一组数据>> plot(t,y1); %以数据t为横轴,y1为纵轴绘制图形,运行结果如下,可以看出周期T=2π/ω=0.25:>>先不要关闭图像窗口,在命令行接着输入:...原创 2019-04-05 22:12:20 · 1522 阅读 · 0 评论 -
Octave常用操作(一)
基础语法% 注释1/0 真/假== 逻辑等于~= 逻辑不等于&& 逻辑与 || 逻辑或xor(1,0) 逻辑异或在交互式中PS1('>>'); 修改命令提示符【注意】键入a=3回车后下面会打印出a=3,如果不想让它打印就在语句后面加分号a=3;Octave中的变量a = pi; %pi表示圆周率,是个常量a ...原创 2019-04-05 10:54:07 · 2553 阅读 · 0 评论 -
Matplotlib之pyplot在数据分析中的常用操作
做机器学习方向首先得学会点Matplotlib库的知识吧,所以我就在这做一下学习笔记,记录一下我在机器学习方向上所常用到的Matplotlib上的知识。官方文档:网址http://matplotlib.org/api/pyplot_api.html#matplotlib后面加.pyplot.函数名便可查询对应的函数用法。一、折线图的绘制先上一个样例代码:import matplotlib.pyplo原创 2017-09-25 09:09:20 · 2909 阅读 · 0 评论 -
Pandas之read_csv和read_excel用法
之前看到一篇文章讲的不错,不过翻译的有点生硬:pandas.read_csv参数详解pandas.read_csv这是pandas.read_csv原文档: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html函数格式:pandas.read_csv(filepath_or_buffer, sep=',翻译 2017-08-18 10:38:29 · 9096 阅读 · 0 评论 -
Numpy之array用法
在学习机器学习时,经常会使用到库Numpy。所以在此做一下笔记。 numpy(Numerical Python)提供了python对多维数组对象的支持;ndarray,具有矢量运算能力,快速、节省空间。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。创建ndarray数组 ndarray:N维数组对象(矩阵),所有元素必须是相同类型。原创 2017-08-07 16:42:50 · 6352 阅读 · 0 评论 -
Numpy之tile用法
numpy.tile(A, reps)文档原文是这么写的: https://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html我翻译了一下,这函数意思就是: 1、通过重复reps次A来构造出一个新数组。 例如:>>> import numpy as np>>> a = np.array([0, 1, 2])>>> np.原创 2017-08-08 21:00:11 · 10802 阅读 · 0 评论 -
Numpy之sum函数用法
文档原文在这: https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.sum.htmlnumpy.sum用法如下:numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False) 求一个数组中给定轴上的元素的总和。参数如下:a:array_like 类型原创 2017-08-09 16:59:17 · 33094 阅读 · 0 评论 -
Numpy之argsort函数用法
文档原文: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html函数用法:numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)[source] argsort函数返回的是数组值从小到大的索引值举例如下: One dimensional ar原创 2017-08-10 10:28:53 · 955 阅读 · 0 评论 -
机器学习之实现简单的神经网络
实现简单的神经网络机器学习的本质是模拟人的神经元对信息的处理方法。可以将神经元看成是一个简单的带有二进制输出功能的逻辑电路门,多种电信号可以从神经元的树突部分传入,然后对多个传入的电信号进行结合,统一地运算,得到的唯一的电信号会通过神经元的轴突–>神经末梢传递给其他神经元的树突。 在机器学习中对数据的分类算法有两种:感知器适应性线性神经元1、神经元的数学表示设:x=⎡⎣⎢⎢x1⋮xm⎤⎦⎥⎥原创 2017-08-02 17:55:25 · 3613 阅读 · 0 评论