221. 最大正方形

该问题是一个二维矩阵处理的算法题,目标是找到只包含1的最大正方形并返回其面积。使用动态规划方法,dp[i][j]表示以(i,j)为右下角的最大正方形边长,通过比较上下左右相邻单元格的值更新dp数组,并记录最大边长。
摘要由CSDN通过智能技术生成

在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:


输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:


输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:

输入:matrix = [["0"]]
输出:0
 

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] 为 '0' 或 '1'

public int maximalSquare(char[][] matrix) {
        int res = 0;
        if (matrix.length == 0 || matrix[0].length == 0) {
            return res;
        }
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 1) {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                    }
                }
                res = Math.max(res, dp[i][j]);
            }
        }
        return res * res;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值