# 密码学：双线性映射

##密码学常用数学基础，需要了解

## 双线性映射（双线性配对）：Bilinear Pairing

Let G1 be a cyclic additive group generated by P, whose order is a prime q, and G2 be a cyclic multiplicative group with the same order q. Let e : G1 ×G1 → G2 be a map with the following properties:
1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zq
2. Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q)/= 1, in other words, the map does not send all pairs in G1 × G1 to the identity in G2;
3. Computability: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈ G1.

In our setting of prime order groups, the Non-degeneracy is equivalent to e(P, Q) /= 1 for all P, Q ∈ G1. So, when P is a generator of G1, e(P, P) is a generator of G2. Such a bilinear map is called a bilinear pairing (more precisely called an admissible bilinear pairing).
（如果P是G1的生成元，则 e(P, P)是G2的生成元,这一类的双线性映射更准确的应称为可接受的双线性映射）

1、双线性性：

2、非退化性：

3、可计算性：

1、现在的密码学相关论文中，习惯将G1,G2设置为乘法循环群。但是，基于椭圆曲线的双线性群构造中，G1,G2是加法群。在大约2005年以前的论文中，G1，G2是加法循环群

2、双线性映射可以通过有限域上的超椭圆曲线上的Tate对或Weil对来构造。

04-16 1万+
04-27 1万+
11-30 9885
05-24 3692
06-14
01-20 2128
04-17 4832
12-04 5535
08-22 521
04-17 586
12-01 404
07-22 3328
11-15 161