密码学:双线性映射

##密码学常用数学基础,需要了解

双线性映射(双线性配对):Bilinear Pairing

定义:一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。

理解:B:V×WX是一个双线性映射,则V固定,W可变时,W到X的映射是线性的,W固定,V可变时,V到X的映射也是线性的,也就是说保持双线性映射中的任意一个参数固定,另一个参数对X的映射都是线性的。 

抽象化的描述:在《An Efficient Signature Scheme from Bilinear Pairings and Its Applications》这篇文献中,有关双线性配对的描述如下:

      Let G1 be a cyclic additive group generated by P, whose order is a prime q, and G2 be a cyclic multiplicative group with the same order q. Let e : G1 ×G1 → G2 be a map with the following properties:
1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zq
2. Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q)/= 1, in other words, the map does not send all pairs in G1 × G1 to the identity in G2;
3. Computability: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈ G1.

       In our setting of prime order groups, the Non-degeneracy is equivalent to e(P, Q) /= 1 for all P, Q ∈ G1. So, when P is a generator of G1, e(P, P) is a generator of G2. Such a bilinear map is called a bilinear pairing (more precisely called an admissible bilinear pairing).
(如果P是G1的生成元,则 e(P, P)是G2的生成元,这一类的双线性映射更准确的应称为可接受的双线性映射)

网上找到的一些中文的解释:(文献还是要读英文原版比较好)

双线性映射可以用五元组(p,G1,G2,GT,e)来描述,G1,G2,GT是三个素数阶乘法循环群,阶数皆为p,定义在这三个三个群上的一个映射关系e:G1*G2 —>GT,满足以下性质: 

     1、双线性性:

对于任意a,b∈Zp和R,S∈G1,有e(Ra, Sb) = e(R, S)ab;

      2、非退化性:

存在R,S∈G1,使得e(R, S) ≠ 1G2(1G2代表G2群的单位元);

      3、可计算性:

存在有效的算法对任意的R,S∈G1,计算e(R, S)的值。

注:

1、现在的密码学相关论文中,习惯将G1,G2设置为乘法循环群。但是,基于椭圆曲线的双线性群构造中,G1,G2是加法群。在大约2005年以前的论文中,G1,G2是加法循环群

2、双线性映射可以通过有限域上的超椭圆曲线上的Tate对或Weil对来构造。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页