双线性对映射 概念理解

双线性映射定义了三个素数p阶群乘法循环群 G 1 , G 2 , G T G_1,G_2,G_T G1,G2,GT,并且定义在这三个群上的映射关系 e : G 1 × G 2 → G T e:G_1 \times G_2 \rightarrow G_T e:G1×G2GT,并且满足以下性质:

Tips:

  • 什么是阶?
    群的阶:群的元素个数,和群的基数是一个意思。
    群中元素的阶: a a a为群 G G G中的一个元素,规定 a 0 = e 单 位 元 a^0=e单位元 a0=e,使 a n = e a^n=e an=e的最小正整数 n n n叫做元素 a a a的阶 ∣ a ∣ |a| a,如果这样的 n n n不存在,则 a a a的阶为无限或称为0。

  • 什么是群?
    G G G是一个非空集合,“*”是 G G G上的一个代数运算,即对所有的该集合中的任意两个元素 a , b a,b a,b,有 a ∗ b ∈ G a * b \in G abG,如果满足以下三个条件:(1)结合律,对所有的 a , b , c ∈ G a,b,c \in G a,b,cG ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a*b)*c=a*(b*c) (ab)c=a(bc) (2) G G G中存在元素 e e e,使得对于每一个 G G G中的元素 a a a都有 e ∗ a = a ∗ e e*a=a*e ea=ae。(3)对 G G G 中的每个元素 a a a,存在另一个元素 b b b使得 a ∗ b = b ∗ a = e a*b=b*a=e ab=ba=e,则称 G G G关于运算 “*” 构成一个群,记为 ( G , ∗ ) (G,*) (G,)。其中称e为单位元,一个群的单位元是唯一的。称b为元素a的逆元,对各个元素来说,也是唯一的。

  1. 双线性:对于任意 G 1 , G 2 中 的 元 素 g 1 , g 2 G_1,G_2中的元素g_1,g_2 G1,G2g1,g2以及属于 Z p Z_p Zp的整数, e ( g 1 a , g 2 b ) = e ( g 1 . g 2 ) a b e(g^a_1,g^b_2)=e(g_1.g_2)^{ab} e(g1a,g2b)=e(g1.g2)ab成立。
  2. 非退化性: G 1 G_1 G1 G 2 G_2 G2中存在 g 1 , g 2 g_1,g_2 g1,g2满足 e ( g 1 , g 2 ) ≠ 1 e(g_1,g_2) \neq 1 e(g1,g2)̸=1
  3. 可计算性:存在有效的算法使得对所有的 G 1 , G 2 G_1,G_2 G1,G2中的元素均可计算 e ( g 1 , g 2 ) e(g_1,g_2) e(g1,g2)

如果 G 1 = G 2 G_1=G_2 G1=G2则上述双线性对是对称的,否则是非对称的。

reference

https://www.zhihu.com/question/39641890

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页