- 📍本文选自专栏:《自然语言处理NLP-实例教程》
- 📍推荐精品专栏:《深度学习100例》
一句话介绍LSTM,它是RNN的进阶版,如果说RNN的最大限度是理解一句话,那么LSTM的最大限度则是理解一段话,详细介绍如下:
LSTM,全称为长短期记忆网络(Long Short Term Memory networks),是一种特殊的RNN,能够学习到长期依赖关系。LSTM由Hochreiter & Schmidhuber (1997)提出,许多研究者进行了一系列的工作对其改进并使之发扬光大。LSTM在许多问题上效果非常好,现在被广泛使用。
所有的循环神经网络都有着重复的神经网络模块形成链的形式。在普通的RNN中,重复模块结构非常简单,其结构如下:

LSTM避免了长期依赖的问题。可以记住长期信息!LSTM内部有较为复杂的结构。能通过门控状态来选择调整传输的信息,记住需要长时间记忆的信息,忘记不重要的信息,其结构如下:

神经网络程序的基本流程如下

前期工作
导入数据
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager
from itertools import accumulate
# 支持中文
plt.rcParams['font.sans-serif']

本文介绍了基于LSTM的电商评论情感分析,详细阐述了LSTM在处理长期依赖关系的优势,并提供了从数据导入、预处理到模型训练的完整流程,包括数据打乱、分词、去除停用词、Word2vec处理和训练集测试集划分等步骤。
订阅专栏 解锁全文
3278

被折叠的 条评论
为什么被折叠?



