基于LSTM的电商评论情感分析-TensorFlow2实现(内附源码)【自然语言处理NLP-100例】

本文介绍了基于LSTM的电商评论情感分析,详细阐述了LSTM在处理长期依赖关系的优势,并提供了从数据导入、预处理到模型训练的完整流程,包括数据打乱、分词、去除停用词、Word2vec处理和训练集测试集划分等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话介绍LSTM,它是RNN的进阶版,如果说RNN的最大限度是理解一句话,那么LSTM的最大限度则是理解一段话,详细介绍如下:

LSTM,全称为长短期记忆网络(Long Short Term Memory networks),是一种特殊的RNN,能够学习到长期依赖关系。LSTM由Hochreiter & Schmidhuber (1997)提出,许多研究者进行了一系列的工作对其改进并使之发扬光大。LSTM在许多问题上效果非常好,现在被广泛使用。

所有的循环神经网络都有着重复的神经网络模块形成链的形式。在普通的RNN中,重复模块结构非常简单,其结构如下:

在这里插入图片描述

LSTM避免了长期依赖的问题。可以记住长期信息!LSTM内部有较为复杂的结构。能通过门控状态来选择调整传输的信息,记住需要长时间记忆的信息,忘记不重要的信息,其结构如下:

在这里插入图片描述
神经网络程序的基本流程如下


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值