假设有向图G采用邻接表存储,设计一个算法,判断图G是否是强连通图。若是则返回yes;否则返回no。(图中顶点信息为整型数据。)
输入
第一行为图中顶点的个数n;
第二行为图的边的条数e;
接下来e行,每行是一条边依附的两个顶点信息。
输出
强连通图输出yes,否则输出no.
样例输入
5
7
0 1
1 2
1 3
2 3
3 0
3 4
4 0
样例输出
yes
#include<iostream>
#include<stdio.h>
#include<string>
#include<string.h>
using namespace std;
int mp[20][20];
int n;
int vis[20];
void dfs(int x)
{
for (int i = 0; i < n; i++)
{
if (mp[i][x] == 1 && !vis[i])
{
vis[i] = 1;
dfs(i);
}
}
}
int main()
{
cin >> n;
int k;
cin >> k;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
mp[i][j] = 0;
}
}
for (int i = 0; i < k; i++)
{
int a, b;
cin >> a >> b;
mp[a][b] = 1;
}
memset(vis, 0, sizeof(vis));
int count = 0;
for (int i = 0; i < n; i++)
{
if (!vis[i])
{
count++;
dfs(i);
}
}
if (count == 1)
{
cout << "yes";
}
else
cout << "no";
return 0;
}
强连通图去除重边一定每一个定点连接的边都为偶数,即进必出,所以直接判断是否能构成一个整体即可