有向图的邻接表存储强连通判断

本文介绍了如何利用邻接表结构来判断有向图是否强连通,包括输入输出的样例说明。
摘要由CSDN通过智能技术生成
假设有向图G采用邻接表存储,设计一个算法,判断图G是否是强连通图。若是则返回yes;否则返回no。(图中顶点信息为整型数据。)
输入
第一行为图中顶点的个数n;
 第二行为图的边的条数e;
接下来e行,每行是一条边依附的两个顶点信息。
输出
强连通图输出yes,否则输出no.
样例输入
5
7
0 1
1 2 
1 3
2 3
3 0 
3 4
4 0
样例输出
yes
#include<iostream>
#include<stdio.h>
#include<string>
#include<string.h>
using namespace std;
int mp[20][20];
int n;
int vis[20];

void dfs(int x)
{
	for (int i  = 0; i < n; i++)
	{
		if (mp[i][x] == 1 && !vis[i])
		{
			vis[i] = 1;
			dfs(i);
		}
	}
}

int main()
{
	cin  >> n;
	int k;
	cin  >> k;
	for (int i  = 0; i < n; i++)
	{
		for (int j  = 0; j < n; j++)
		{
			mp[i][j] = 0;
		}
	}
	for (int i  = 0; i < k; i++)
	{
		int a, b;
		cin  >> a  >> b;
		mp[a][b] = 1;
	}
	memset(vis, 0, sizeof(vis));
	int count  = 0;
	for (int i  = 0; i < n; i++)
	{
		if (!vis[i])
		{
			count++;
			dfs(i);
		}
	}
	if (count  == 1)
	{
		cout  << "yes";
	}
	else
		cout  << "no";
		return 0;
}

强连通图去除重边一定每一个定点连接的边都为偶数,即进必出,所以直接判断是否能构成一个整体即可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值