机器篇——逻辑回归(Logistic Regression)

返回目录上一章:机器篇——线性回归下一章:机器篇——决策树(一)细讲了线性回归的推导和代码,图文结合,本章再接再厉,来讲解逻辑回归。大佬来了,请多多指教。逻辑回归的理解一. 回归与分类 1. 关于回归,给人直观的理解就是拟合 2. 对于二类线性可分的数据集,使用线性感知器...
摘要由CSDN通过智能技术生成

返回目录

上一章: 机器篇——线性回归 

下一章:机器篇——决策树(一)

细讲了线性回归的推导和代码,图文结合,本章再接再厉,来讲解逻辑回归。大佬来了,请多多指教。

 

 

 

逻辑回归的理解

一. 回归与分类

          1. 关于回归,给人直观的理解就是拟合

                   

          2. 对于二类线性可分的数据集,使用线性感知器就可以很好的分类

          3. 但如果二类线性不可分的数据,无法找到一条直线能够将两种类别很好地区分,即线性回归的分类对于线性不可分的数据无法有效分类。

          4. 诚然,数据线性可分可以使用线性分类器;如果数据线性不可分,可以使用非线性分类器。这里,似乎没逻辑回归什么事情。但是,如果想知道对于一个二分类问题,其具体的一个样例:不仅想知道该分类属于某一类,而且还想知道该类属于某一类的概率有多大。

            

          5.  线性回归和非线性回归的问题都不能给予解答,假设其分类函数如下:

                           \LARGE y = W^TX

          6. 因为概率的范围在 [0, 1] 之间,这就需要一个更好的映射函数,能够将分类的结果很好的映射成 [0, 1] 之间的概率,并且这个函数能够具有很好的可微分性。在这种需求下,大佬找到了这个映射函数,即 Sigmoid 函数。其形式如下:

                      \LARGE g(z) = \tfrac{1}{1 + e^{-z}}

                

          7. Sigmoid & Logistic Regression

             (1). 在学习 Logistic Regression 的时候,会出现一个重要的问题:

                     为什么 LR (Logistic Regression) 会使用 Sigmoid 函数,而不是其他的函数?

             (2). 其实,上述的问题本身就是不对的。因为是使用了 Logistic Function (Sigmoid) ,所以才有了 Logistic Regression 这个名字。即:正是因为 Sigmoid 才有了 LR,而不是 LR 选择了 Sigmoid 函数。

          8. 由于 LR 是使用回归函数做分类,而假设的回归函数为:\large y = WX, 由于 Sigmoid 函数为 \large g(z) = \tfrac{1}{1 + e ^{-z}}。所以,\large g(z) 是关于 \large y 的函数,即:

                  \LARGE \left\{\begin{matrix} y = WX& & \\ g(z) = \tfrac{1}{1 + e^{-z}} & & \end{matrix}\right.\Rightarrow g(w, x) = \tfrac{1}{1 + e^{-WX}} 

                  

二. Sigmoid 的性质与目标函数

          1. Sigmoid 函数的导数:\large g'(z) = g(z)(1 - g(z))

              推导过程:

                       \LARGE g'(z) = \frac{\partial g(z)}{\partial z}

                                        \LARGE = \tfrac{-1}{(1 + e^{-z})^2}e^{-z}(-1)

                                        \LARGE = \tfrac{e^{-z}}{(1 + e^{-z})^2}

                                        \LARGE = \tfrac{1}{1 + e^{-z}}(1 - \tfrac{1}{1 + e^{-z}})

                                        \LARGE = g(z)(1 - g(z))

          2. Sigmoid 函数的概率

              因为 Sigmoid 函数的概率值在 [0, 1] 之间,即:

                      \large p_{i}(right) = \left\{\begin{matrix} g(w, x_{i}) & p(positive): y_{i} = 1 \\ 1 - g(w, x_{i}) & p(negative): y_{i} = 0 \end{matrix}\right.

              所以对于每一条数据预测正确的概率:

                     \LARGE p_{i}(right) = [g(w, x_{i})]^{y_{i}}[1 - g(w, x_{i})]^{1 - y_{i}}

          3. 全部预测正确的概率

               由于 Sigmoid 函数服从正太分布,而且:

                   全部预测正确的概率 = 每一条数据预测正确的概率相乘

                   \LARGE p(allRight) = \prod_{i = 1}^{m}p_{i}(right)

          4. LR 的目标函数

              记 \large p(allRight) 为 \large L(\theta)\large w 与 \large \theta 等价。

              由 

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值