深度篇——神经网络(三) 网络拓扑与训练神经网络

本文深入探讨了神经网络的网络拓扑,包括单层和多层网络结构,并详细阐述了训练神经网络的过程,涉及前向传播、反向传播、链式法则和梯度下降法。通过实例解释了如何计算损失函数和更新权重,为理解神经网络的训练机制提供了清晰的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

返回主目录

返回神经网络目录

上一章:深度篇——神经网络(二)  ANN与DNN 和常用激活函数

下一章:深度篇——神经网络(四)  细说 调优神经网络

 

本小节,细说 网络拓扑与训练神经网络,下一小节细说 调优神经网络

 

二. ANN 与 DNN

3. 网络拓扑

(1). 单层网络

     

 

(2). 多层网络

     

     多层网络至少有 1 个 hidden 层,也可以有多个 hidden 层。有 bias 值,可以让函数不必一定要经过原点。

 

(3). 无论是 ANN,还是 DNN,网络连接都是全连接。

      output 层的激活函数与 hidden 层的激活函数可以相同,也可以不同,根据需求而定。output 层可以是单值输出,也可以是多值输出。

 

4. 训练神经网络

(1). 训练神经网络的两个阶段

  ①. 前向阶段

        前向阶段即正向传播

        正向传播根据数据集和激活函数,当前的 \large w 值,计算出  loss 损失函数

  ②. 后向阶段

        后向阶段即反向传播

        反向传播利用链式法则对 \large w 进行求导,代入数据集的值,求出梯度 \large g

  ③. 链式法则

        若函数 \large u = \varphi (t), \; v = \psi (t)  在点 \large t 上可导,\large z = f(u, v) 则

            \large \frac{\partial z}{\partial t} = \frac{\partial z}{\partial u} \times \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \times \frac{\partial v}{\partial t}

  ④. 栗子

     a. 栗一

         有 \large f(x, y, z) = (x + y) \cdot z,且 \large x = -2, y = 5, z = -4

          解:令 \large q = x + y,则 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值