上一章:深度篇——神经网络(二) ANN与DNN 和常用激活函数
下一章:深度篇——神经网络(四) 细说 调优神经网络
本小节,细说 网络拓扑与训练神经网络,下一小节细说 调优神经网络
二. ANN 与 DNN
3. 网络拓扑
(1). 单层网络
(2). 多层网络
多层网络至少有 1 个 hidden 层,也可以有多个 hidden 层。有 bias 值,可以让函数不必一定要经过原点。
(3). 无论是 ANN,还是 DNN,网络连接都是全连接。
output 层的激活函数与 hidden 层的激活函数可以相同,也可以不同,根据需求而定。output 层可以是单值输出,也可以是多值输出。
4. 训练神经网络
(1). 训练神经网络的两个阶段
①. 前向阶段
前向阶段即正向传播
正向传播根据数据集和激活函数,当前的 值,计算出 loss 损失函数
②. 后向阶段
后向阶段即反向传播
反向传播利用链式法则对 进行求导,代入数据集的值,求出梯度
③. 链式法则
若函数 在点
上可导,
则
④. 栗子
a. 栗一
有 ,且
。
解:令 ,则