对VC维的理解和认识

VC维是模型的复杂程度,模型假设空间越大,VC维越高。某种程度上说,VC维给机器学习可学性提供了理论支撑。

1. 测试集合的loss是否和训练集合的loss接近?VC维越小,理论越接近,越不容易overfitting。
2. 训练集合的loss是否足够小?VC维越大,loss理论越小,越不容易underfitting。

我们对模型添加的正则项可以对模型复杂度(VC维)进行控制,平衡这两个部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值