亲爱的读者们,大家好!我非常荣幸有机会与你们分享我在音乐识别算法领域的一些探索。今天我们将会深入研究Shazam音乐识别算法,并以此为基础在Matlab环境中进行实现。这篇文章的目的是帮助你理解Shazam音乐识别算法的基本原理和工作流程,同时通过示例代码为你提供一种小型Matlab实现的方式。我希望,尽管这个主题在初看起来可能有些复杂,但你能够通过我的解释和示例代码找到明确的理解和启发。
A部分:特征提取
特征提取是音乐识别中非常关键的一步。我们首先要对音乐进行特征提取,然后基于这些特征对音乐进行识别。因此,我们开始我们的旅程时,我们首先需要准备好我们的音乐库,并对其中的音乐进行特征提取。
首先,我们需要设置好我们的音乐库目录(songdir)和哈希目录(hashdir)。这可以在local_settings_sample.m文件中完成。你需要填写你选择的songdir和hashdir,然后将其另存为local_settings.m。请注意,songdir可以是任何目录,而hashdir必须手动创建。songdir目录中应该包含的音频片段必须是.wav格式、单声道,并且最好是采样频率为8kHz。对于音乐识别,每个音频片段都应该是