从入门到精通:LKH (Lin-Kernighan-Helsgaun) 求解器深入解析与实践,完美解决TSP问题

本文详细介绍了LKH求解器在旅行商问题(TSP)中的应用,从TSP问题的基本概念到LKH求解器的起源、k-opt移动原理,再到工作流程和实际应用的优势。LKH通过动态k值选择和搜索策略避免局部最优,为大规模TSP问题提供高效解决方案。虽然不保证最优解,但在大多数情况下,LKH提供的解非常接近最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引言:

在旅行商问题(TSP)的解决方法中,LKH(Lin-Kernighan-Helsgaun)求解器因其卓越的性能而备受瞩目。作为一种启发式方法,LKH结合了k-opt移动的策略,成功地为TSP问题提供了高效的解决方案。本文将为大家详细介绍LKH的基本原理,以及如何利用它解决实际的TSP问题。

2. 旅行商问题(TSP)简介:

旅行商问题,也称为TSP问题,是组合优化中的经典问题。简单来说,它是这样描述的:给定一组城市和每对城市之间的距离,寻找一个最短的可能的路线,使得旅行者访问每个城市一次并返回出发城市。

举个简单的例子,假设有4个城市,城市之间的距离如下:

A-B: 10
A-C: 15
A-D: 20
B-C: 35
B-D: 25
C-D: 30

TSP问题的目标就是找到一个路径,使得从一个城市开始,经过所有的城市一次,并回到起始城市的总距离最短。

3. LKH 求解器的起源:

LKH求解器是基于Lin-Kernighan启发式的一个改进实现。它由Keld Helsgaun进一步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值