领域搜索算法之经典The Lin-Kernighan algorithm

本文专业探讨领域搜索算法中的The Lin-Kernighan算法,它是TSP问题中针对3-opt算法的改进,提高了搜索效率。通过详细解释算法原理、伪代码和优化约束,作者分享了学习心得,并指出LKH算法的独特之处在于使用不属于当前路径的边进行交换。此外,还提及了算法性能提升的约束条件,如形成闭合回路、收益为正等,以及未来可能的改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

领域搜索算法之经典The Lin-Kernighan algorithm

领域搜索算法是TSP问题中的三大经典搜索算法之一,另外两种分别是回路构造算法和组合算法。
而这篇文章要介绍的The Lin-Kernighan algorithm属于领域搜索算法。顾名思义,就是在已有的可行解的领域范围内进行搜索更好的解。
文章不是科普性的文章,专业性更强,开门见山。
LKH算法是对原有的3-opt算法的改进,速度更快,效率更高。
也是因为学习该算法,纠正了笔者之前对3-opt的错误理解,同时也作为学习笔记分享给大家
下面看算法的伪代码

The Lin-Kernighan algorithm

需要提前说明的是
问题背景是对称的TSP问题,图是无向完全图,距离矩阵是dij对称的
T是初始可行解,T=(t1,t2,t3,…,tn)
xi,表示T中边,yi表示不属于T中的边,i可取1-n
Gi表示,将xi替换成yi所得到的收益,即总花费是否减少
在这里插入图片描述

1.生成初始可行解T
2.置i=1,选择t1
3 选择x1为(t1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

原创小白变怪兽

帮助原创小白成为怪兽吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值