1. 网络错误没有正确训练,损失完全不收敛
可能两种原因:
- 错误的input data,网络无法学习。
- 错误的网络,网络无法学习。
解决办法:
- 检测数据是否存在可以学习的信息,这个数据集中的数值是否泛化(防止过大或过小的数值破坏学习)。
- 如果是错误的数据则需要去再次获得正确的数据,如果是数据的数值异常我们可以使用zscore函数(数据标准化处理)来解决这个问题。
- 如果是神经网络的错误,则调整网络,包括:网络深度,非线性程度,分类器的种类等等。
2. 部分收敛
可能两种原因:
- underfitting(欠拟合)
- overfitting (过拟合)
解决办法:
- underfitting:增加网络的复杂度(深度),降低learning rate,优化数据集,增加网络的非线性度(ReLu),降低正则化约束。
- overfitting:丰富数据,增加网络的稀疏度,降低网络的复杂度(深度),使用正则化约束,添加Dropout,Early stopping,适当降低learning rate,适当减少epoch的次数。
3. 全部收敛但效果不好
这是个好的开始,接下来我们要做的就是微调一些参数。
解决办法:调整方法就是保持其他参数不变,只调整一个参数。这里需要调整的参数会有:learning rate,minibatch size,epoch,filter size,number of filter
- 好的实验环境是成功的一半:
- 各个参数的设置部分集中在一起。(如果参数的设置分布在代码的各个地方,那么修改的过程想必会非常痛苦)
- 可以输出模型的损失函数值以及训练集和验证集上的准确率。
- 可以考虑设计一个子程序,可以根据给定的参数,启动训练并监控和周期性保存评估结果。再由一个主程序,分配参数以及并行启动一系列子程序。
- 画图:
一般是训练数据遍历一轮以后,就输出一下训练集和验证集准确率。
同时画到一张图上。这样训练一段时间以后,如果模型一直没有收敛,那么就可以停止训练,尝试其他参数了,以节省时间。
如果训练到最后,训练集,测试集准确率都很低,那么说明模型有可能欠拟合。
如果训练集准确率较高,测试集准确率比较低,那么模型有可能过拟合,这个时候就需要向提高模型泛化能力的方向,调节参数。
- 从粗到细分阶段调参:
- 建议先参考相关论文,以论文中给出的参数作为初始参数。至少论文中的参数,是个不差的结果。
- 如果找不到参考,那么只能自己尝试了。可以先从比较重要,对实验结果影响比较大的参数开始,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。例如学习率一般就比正则值,dropout值重要的话,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。
- 如果实在找不到一组参数可以让模型收敛。那么就需要检查,是不是其他地方出了问题,例如模型实现,数据等等。
- 提高速度:
调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。因此可以尝试对数据进行精简,以提高速度,在有限的时间内可以尝试更多参数。
- 对训练数据进行采样。例如原来100W条数据,先采样成1W,进行实验看看。
- 减少训练类别。例如手写数字识别任务,原来是10个类别,那么我们可以先在2个类别上训练,看看结果如何。
- 超参数范围:
建议优先在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如0.001 0.01 0.1 1 10,以10为阶数进行尝试。因为他们对训练的影响是相乘的效果。不过有些参数,还是建议在原始尺度上进行搜索,例如dropout值: 0.3 0.5 0.7
- 经验参数:
- learning rate: 1 0.1 0.01 0.001, 一般从1开始尝试。很少见learning rate大于10的。学习率一般要随着训练进行衰减。衰减系数一般是0.5。 衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。 不过更建议使用自适应梯度的办法,例如adam,adadelta,rmsprop等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。对RNN来说,有个经验:如果RNN要处理的序列比较长,或者RNN层数比较多,那么learning rate一般小一些比较好,否则有可能出现结果不收敛,甚至Nan等问题。
- 网络层数: 先从1层开始。
- 每层结点数: 16 32 128,超过1000的情况比较少见。超过1W的从来没有见过。
- batch size: 128上下开始。batch size值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为batch size太大,一般不会对结果有太大的影响,而batch size太小的话,结果有可能很差。
- dropout:0.5
- L2正则:1.0,超过10的很少见。
- 词向量embedding大小:128,256
- 正负样本比例: 这个是非常忽视,但是在很多分类问题上,又非常重要的参数。很多人往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,建议对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。 在使用mini-batch方法进行训练的时候,尽量让一个batch内,各类别的比例平衡,这个在图像识别等多分类任务上非常重要。
- 自动调参:
- Gird Search:这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。
- Random Search:Bengio在Random Search for Hyper-Parameter Optimization中指出,Random Search比Gird Search更有效。实际操作的时候,一般也是先用Gird Search的方法,得到所有候选参数,然后每次从中随机选择进行训练。
- Bayesian Optimization:贝叶斯优化,考虑到了不同参数对应的实验结果值,因此更节省时间。和网络搜索相比简直就是老牛和跑车的区别。
一些大的注意事项
- 刚开始, 先上小规模数据,模型往大了放,只要不爆显存,能用256个filter你就别用128个。直接奔着过拟合去。没错,就是训练过拟合网络,连测试集验证集这些都可以不用。如果小数据量下,这么粗暴的大网络奔着过拟合去都没效果,那么有可能是:模型的输入输出是不是有问题? 代码错误? 模型解决的问题定义是不是有问题? 你对应用场景的理解是不是有错? Loss设计要合理。一般来说分类就是Softmax,回归就是L2的loss。 但是要注意loss的错误范围(主要是回归),你预测一个label是10000的值,模型输出0,你算算这loss多大,这还是单变量的情况下。 一般结果都是nan。所以不仅仅输入要做normalization,输出也要这么弄。多任务情况下,各loss想法限制在一个量级上,或者最终限制在一个量级上,初期可以着重一个任务的loss。
- 观察loss胜于观察准确率。 准确率虽然是评测指标,但是训练过程中还是要注意loss的。你会发现有些情况下,准确率是突变的,原来一直是0,可能保持上千迭代,然后突然变1。要是因为这个你提前中断训练了,只有老天替你惋惜了。而loss是不会有这么诡异的情况发生的,毕竟优化目标是loss。给NN一点时间,要根据任务留给NN的学习一定空间。不能说前面一段时间没起色就不管了。有些情况下就是前面一段时间看不出起色,然后开始稳定学习。
- 确认分类网络学习充分。 分类网络就是学习类别之间的界限。你会发现,网络就是慢慢的从类别模糊到类别清晰的。怎么发现?看Softmax输出的概率的分布。如果是二分类,你会发现,刚开始的网络预测都是在0.5上下,很模糊。随着学习过程,网络预测会慢慢的移动到0、1这种极值附近。所以,如果你的网络预测分布靠中间,再学习学习。
- Learning Rate设置合理。 太大:loss爆炸,或者nan。太小:半天loss没反映。需要进一步降低了:loss在当前LR下一路降了下来,但是半天不再降了。如果上面的Loss设计那块你没法合理,初始情况下容易爆,先上一个小LR保证不爆,等loss降下来了,再慢慢升LR,之后当然还会慢慢再降LR。
- 对比训练集和验证集的loss。 是判断过拟合,训练是否足够,是否需要early stop的依据。
- 清楚receptive field的大小。 CV的任务,context window是很重要的。所以你对自己模型的receptive field的大小要心中有数。这个对效果的影响还是很显著的。特别是用FCN,大目标需要很大的receptive field。
简短的注意事项
- 预处理:-mean/std zero-center就够了,PCA,白化什么的都用不上。
- shuffle,shuffle,shuffle。
- 网络原理的理解最重要,CNN的conv这块,你得明白sobel算子的边界检测。
- Dropout,Dropout,Dropout(不仅仅可以防止过拟合, 其实这相当于做人力成本最低的Ensemble,当然,训练起来会比没有Dropout的要慢一点,同时网络参数你最好相应加一点,对,这会再慢一点)。
- CNN更加适合训练回答是否的问题,如果任务比较复杂,考虑先用分类任务训练一个模型再finetune。
- 无脑用ReLU(CV领域)。
- 无脑用3x3。
- 无脑用xavier。
- LRN一类的,其实可以不用。不行可以再拿来试试看。
- filter数量2^n
- 多尺度的图片输入(或者网络内部利用多尺度下的结果)有很好的提升效果。
- 第一层的filter,数量不要太少。否则根本学不出来(底层特征很重要)。
- sgd adam 这些选择上,看你个人选择。一般对网络不是决定性的。反正我无脑用sgd + momentum。
- batch normalization我一直没用,虽然我知道这个很好,我不用仅仅是因为我懒。所以要鼓励使用batch normalization。
- 不要完全相信论文里面的东西。结构什么的觉得可能有效果,可以拿去试试。
- 你有95%概率不会使用超过40层的模型。
- shortcut的联接是有作用的。