背景
随着新零售的概念慢慢崛起,互联网电商行业竞争越来越激烈!实时数据信息对于电商行业尤为重要,那如何从实时不断的数据流中获取我们想要的信息呢?以下案例是 流计算的合作伙伴袋鼠云用阿里云流计算来解决电商订单管理案例。场景案例
统计商铺的订单总数和总的销量
业务架构图

业务流程:
1. 用阿里云的DTS([DTS信息同步](https://help.aliyun.com/document_detail/60037.html?spm=5176.10695662.1996646101.searchclickresult.4148a693oQy3gY))把用户的数据同步到大数据总线(DATAHUB)。
2. 阿里云流计算订阅大数据总线(DATAHUB)的数据进行实时计算。
3. 将实时数据插入到RDS的云数据库
4. 再通过阿里云的DATAV或者是其他的大屏做数据展示。
准备工作
RDS->DataHub 数据实时同步,是将 RDS for MySQL 产生的增量数据数据实时同步到 DataHub 中的 topic。
由RDS经过DTS数据同步到大数据总线(DATAHUB)后 DataHub表Schema信息。
可以参考[RDS 到 DataHub 数据实时同步](https://help.aliyun.com/document_detail/45214.html?spm=5176.doc26633.6.602.o8AntI)
1.订单源表
| 字段名 | 数据类型 | 详情 |
| :--- | :--- | :--- |
| dts_ordercodeofsys | varchar | 订单编号 |
| dts_paytime | varchar | 订单付款时间 |
| dts_deliveredtime | varchar | 订单发货时间 |
| dts_storecode | varchar | 店铺编号 |
| dts_warehousecode | varchar | 仓库code |
| dts_cancelled | bigint | 是否取消 |
| dts_delivered | bigint | 是否发货 |
| dts_receivercity | varchar | 收货人城市 |
| dts_receiverprovince | varchar | 收货人省份 |
| dts_record_id | varchar | 记录ID |
| dts_operation_flag | varchar | 操作Flag |
| dts_instance_id | varchar | 数据库instanceId |
| dts_db_name | varchar | 数据库名 |
| dts_table_name | varchar | 数据表 |
| dts_utc_timestamp | varchar | 更新时间 |
| dts_before_flag | varchar | 变更前标识 |
| dts_after_flag | varchar | 变更后标识 |
2.订单详情源表
| 字段名 | 数据类型 | 详情 |
| :--- | :--- | :--- |
| dts_ordercodeofsys | varchar | 订单编号 |
| dts_skuname | varchar | 商品名字 |
| dts_skucode | varchar | 商品编号 |