from sklearn.datasets import load_iris,fetch_20newsgroups,load_boston
from sklearn.model_selection import train_test_split
# 花数据集
li =load_iris()
print("特征值")
print(li.data)
print("目标值")
print(li.target)
print(li.DESCR)
print(li.feature_names)
print(li.target_names)
#训练集x_train,y_train 测试集x_test,y_test
x_train,x_test,y_train,y_test = train_test_split(li.data,li.target,test_size=0.25)
print("训练集:",x_train,y_train)
print("测试集:",x_test,y_test)
特征值
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
目标值
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
['setosa' 'versicolor' 'virginica']
训练集: [[6.7 2.5 5.8 1.8]
[5. 2. 3.5 1. ]
[6.5 3. 5.2 2. ]
[5. 3.2 1.2 0.2]
[5.5 2.3 4. 1.3]
[4.8 3.4 1.6 0.2]
[5. 3.3 1.4 0.2]
[6.6 3. 4.4 1.4]
[6. 2.9 4.5 1.5]
[6.3 3.4 5.6 2.4]
[5.5 2.4 3.8 1.1]
[5.1 3.4 1.5 0.2]
[5. 3.4 1.5 0.2]
[6.5 3.2 5.1 2. ]
[4.6 3.2 1.4 0.2]
[6.3 2.7 4.9 1.8]
[4.8 3.4 1.9 0.2]
[7.3 2.9 6.3 1.8]
[5.6 2.8 4.9 2. ]
[6. 3. 4.8 1.8]
[5.7 2.8 4.5 1.3]
[6. 2.2 4. 1. ]
[5.6 2.5 3.9 1.1]
[5.5 3.5 1.3 0.2]
[5.1 2.5 3. 1.1]
[5.2 3.4 1.4 0.2]
[6.2 2.8 4.8 1.8]
[6.9 3.1 4.9 1.5]
[6.4 2.8 5.6 2.1]
[5. 3.6 1.4 0.2]
[7.9 3.8 6.4 2. ]
[5.8 2.7 5.1 1.9]
[5.4 3.9 1.7 0.4]
[6.3 3.3 4.7 1.6]
[6.1 2.8 4. 1.3]
[5.9 3.2 4.8 1.8]
[5.4 3.9 1.3 0.4]
[4.5 2.3 1.3 0.3]
[6.6 2.9 4.6 1.3]
[7.6 3. 6.6 2.1]
[5.8 2.6 4. 1.2]
[6.9 3.2 5.7 2.3]
[6.5 3. 5.5 1.8]
[5.1 3.8 1.5 0.3]
[5.3 3.7 1.5 0.2]
[6.3 2.9 5.6 1.8]
[5.5 2.5 4. 1.3]
[7.1 3. 5.9 2.1]
[6. 3.4 4.5 1.6]
[6.3 2.8 5.1 1.5]
[4.6 3.1 1.5 0.2]
[7.7 2.6 6.9 2.3]
[5. 3. 1.6 0.2]
[5.8 2.7 4.1 1. ]
[7.4 2.8 6.1 1.9]
[5.4 3.7 1.5 0.2]
[6.4 3.1 5.5 1.8]
[6.7 3.3 5.7 2.1]
[4.4 3. 1.3 0.2]
[6.2 2.9 4.3 1.3]
[5.1 3.3 1.7 0.5]
[6.1 3. 4.6 1.4]
[6.7 3.3 5.7 2.5]
[5.8 2.7 5.1 1.9]
[5.6 2.7 4.2 1.3]
[5.7 2.6 3.5 1. ]
[7.2 3.6 6.1 2.5]
[5.8 2.7 3.9 1.2]
[5.2 3.5 1.5 0.2]
[5.6 3. 4.1 1.3]
[6.5 2.8 4.6 1.5]
[7.2 3.2 6. 1.8]
[4.3 3. 1.1 0.1]
[5.7 3. 4.2 1.2]
[6.3 2.5 5. 1.9]
[5. 2.3 3.3 1. ]
[5.7 3.8 1.7 0.3]
[6. 2.7 5.1 1.6]
[4.6 3.4 1.4 0.3]
[5.2 4.1 1.5 0.1]
[6. 2.2 5. 1.5]
[4.9 2.4 3.3 1. ]
[6.2 2.2 4.5 1.5]
[6.1 2.9 4.7 1.4]
[6.9 3.1 5.1 2.3]
[4.9 3.6 1.4 0.1]
[6.5 3. 5.8 2.2]
[5.1 3.8 1.9 0.4]
[5.1 3.5 1.4 0.2]
[6.9 3.1 5.4 2.1]
[5.7 2.5 5. 2. ]
[6.1 3. 4.9 1.8]
[7.7 2.8 6.7 2. ]
[6.4 3.2 4.5 1.5]
[4.9 3. 1.4 0.2]
[6.7 3.1 4.7 1.5]
[5.5 2.6 4.4 1.2]
[6.1 2.6 5.6 1.4]
[5.4 3. 4.5 1.5]
[5.5 2.4 3.7 1. ]
[4.6 3.6 1. 0.2]
[5.1 3.7 1.5 0.4]
[6.8 3. 5.5 2.1]
[4.9 3.1 1.5 0.2]
[4.8 3. 1.4 0.3]
[7.7 3. 6.1 2.3]
[4.4 2.9 1.4 0.2]
[5. 3.4 1.6 0.4]
[4.8 3. 1.4 0.1]
[5.1 3.8 1.6 0.2]
[5.6 2.9 3.6 1.3]
[6.7 3. 5. 1.7]] [2 1 2 0 1 0 0 1 1 2 1 0 0 2 0 2 0 2 2 2 1 1 1 0 1 0 2 1 2 0 2 2 0 1 1 1 0
0 1 2 1 2 2 0 0 2 1 2 1 2 0 2 0 1 2 0 2 2 0 1 0 1 2 2 1 1 2 1 0 1 1 2 0 1
2 1 0 1 0 0 2 1 1 1 2 0 2 0 0 2 2 2 2 1 0 1 1 2 1 1 0 0 2 0 0 2 0 0 0 0 1
1]
测试集: [[5.9 3. 4.2 1.5]
[5.7 2.8 4.1 1.3]
[5.2 2.7 3.9 1.4]
[6.8 2.8 4.8 1.4]
[5.6 3. 4.5 1.5]
[6.3 3.3 6. 2.5]
[7.7 3.8 6.7 2.2]
[6.4 2.8 5.6 2.2]
[5.4 3.4 1.7 0.2]
[6.7 3.1 5.6 2.4]
[6.8 3.2 5.9 2.3]
[5.7 4.4 1.5 0.4]
[6.7 3. 5.2 2.3]
[5.4 3.4 1.5 0.4]
[4.7 3.2 1.3 0.2]
[4.8 3.1 1.6 0.2]
[4.9 3.1 1.5 0.1]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[5.9 3. 5.1 1.8]
[5.1 3.5 1.4 0.3]
[5.5 4.2 1.4 0.2]
[7.2 3. 5.8 1.6]
[4.9 2.5 4.5 1.7]
[4.4 3.2 1.3 0.2]
[7. 3.2 4.7 1.4]
[5.7 2.9 4.2 1.3]
[6.3 2.3 4.4 1.3]
[6.1 2.8 4.7 1.2]
[6.4 2.7 5.3 1.9]
[5.8 4. 1.2 0.2]
[6.4 2.9 4.3 1.3]
[6.3 2.5 4.9 1.5]
[5. 3.5 1.6 0.6]
[6.7 3.1 4.4 1.4]
[5. 3.5 1.3 0.3]
[4.7 3.2 1.6 0.2]
[6.2 3.4 5.4 2.3]] [1 1 1 1 1 2 2 2 0 2 2 0 2 0 0 0 0 2 2 2 0 0 2 2 0 1 1 1 1 2 0 1 1 0 1 0 0
2]
Process finished with exit code 0
# 新闻数据集
news = fetch_20newsgroups(subset='all')
print(news.data)
print(news.target)
# 波士顿房价
lb = load_boston()
print("特征值")
print(lb.data)
print("目标值")
print(lb.target)
print(lb.DESCR)
C:\ProgramData\Anaconda3\python.exe C:/Users/szt/PycharmProjects/untitled2/s1/06datasetdivide.py
特征值
[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
[2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
[2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
...
[6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
[1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
[4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
目标值
[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.
21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.
11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4
16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3
11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
22. 11.9]
.. _boston_dataset:
Boston house prices dataset
---------------------------
**Data Set Characteristics:**
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression
problems.
.. topic:: References
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
Process finished with exit code 0
fit,transform的是同一个数组
fit,transform的是不同数组