医疗计算机人工智能交叉期刊

文章讨论了多本涉及神经计算、知识系统、认知计算和机器学习等领域的期刊,特别提到了《计算机生物学与医学》期刊的影响因子在近几年显著上升,从2016年的1.863分增长到2020年的4.589分,显示了这些IT技术在科研中的重要性和增长趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Neural Computing and Applications
在这里插入图片描述在这里插入图片描述

2.Knowledge- Based Systems
在这里插入图片描述在这里插入图片描述

3.Cognitive Computation
在这里插入图片描述在这里插入图片描述

4.International Journal of Machine Learning and Cybernetics
在这里插入图片描述
在这里插入图片描述

5.BMC Medical Informatics and Decision Making
在这里插入图片描述在这里插入图片描述

6.Expert Systems with Applications
在这里插入图片描述
在这里插入图片描述

7.Journal of Biomedical Informatics
在这里插入图片描述在这里插入图片描述

8.IT Professional
在这里插入图片描述
在这里插入图片描述

9.Scientific Programming
在这里插入图片描述在这里插入图片描述

10.ACM Transactions on Asian and Low-Resource Language Information Processing
在这里插入图片描述
在这里插入图片描述
11.Computers in Biology and Medicine
ISSN: 0010-4825,E-ISSN:1879-0534;1971年创刊,由Elsevier BV出版。近5年影响因子上涨迅速,2016年影响因子为1.863,2017年突破2分,2018年持续2分+,2019年突破3分,2019年影响因子为3.434,2020年影响因子为4.589,上涨算是比较快的,5年从1分+涨至4分+。
在这里插入图片描述
在这里插入图片描述

### 医学人工智能相关期刊列表 以下是与医学人工智能相关的部分重要期刊列表,涵盖了多个细分领域以及跨学科的研究方向: #### 1. **医学图像处理领域** - *Medical Image Analysis* 这是一份专注于医学成像分析的顶级期刊,在医学图像处理和人工智能应用方面具有很高的影响力[^3]。 - *IEEE Transactions on Medical Imaging (TMI)* 主要发表关于医学影像获取、重建、处理和解释方面的高质量研究成果。 #### 2. **综合医学与人工智能交叉领域** - *Journal of Biomedical Informatics* 关注生物医学数据挖掘、机器学习及其在医疗健康中的实际应用[^4]。 - *Artificial Intelligence in Medicine (AIM)* 致力于探讨人工智能技术如何改善医疗服务的质量和效率[^1]。 - *npj Digital Medicine* 聚焦数字化医疗创新,包括但不限于基于AI算法开发的新工具和技术解决方案。 #### 3. **计算机科学与医学结合类** - *International Journal of Machine Learning and Cybernetics* 提供了一个平台来展示有关模式识别、神经网络以及其他形式的人工智能理论及其应用于生命科学研究的工作成果。 - *Computers in Biology and Medicine* 探讨计算方法在解决生物学问题上的潜力,同时也涉及到了利用先进信息技术改进临床实践的可能性。 #### 4. **其他推荐的一区顶尖期刊** | 领域 | 名称 | |--------------------|-------------------------------------------| | 肿瘤学 | Clinical Cancer Research | | 神经科学 | Nature Neuroscience | | 胃肠肝病学 | Gastroenterology | | 计算机科学/人工智能 | IEEE Transactions on Pattern Analysis and Machine Intelligence | 上述表格列出了几个不同领域的高影响因子一区期刊,对于从事医学AI研究的人来说非常值得关注[^2]。 ```python # 示例代码:用于筛选特定主题的文章(伪代码) def filter_articles(keywords, journals): filtered = [] for journal in journals: if any(word in journal['title'] or word in journal['abstract'] for word in keywords): filtered.append(journal) return filtered keywords = ['medical', 'artificial intelligence'] journals = [ {'title': 'Medical Image Analysis'}, {'title': 'Artificial Intelligence in Medicine'} ] result = filter_articles(keywords, journals) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值