求九位累进可除数。所谓九位累进可除数就是这样一个数:这个数用到1到9这九个数字组成,每个数字刚好只出现一次。这九个位数的前两位能被2整除,前三位能被3整除……前N位能被N整除,整个九位数能被9整除。
*问题分析与算法设计
问题本身可以简化为一个穷举问题:只要穷举每位数字的各种可能取值,按照题目的要求对穷举的结果进行判断就一定可以得到正确的结果。
问题中给出了“累进可除”这一条件,就使得我们可以在穷举法中加入条件判断。在穷举的过程中,当确定部分位的值后,马上就判断产生的该部分是否符合“累进可除”条件,若符合,则继续穷举下一位数字;否则刚刚产生的那一位数字就是错误的。这样将条件判断引入到穷举法之中,可以尽可能早的发现矛盾,尽早地放弃不必要穷举的值,从而提高程序的执行效率。
为了达到早期发现矛盾的目的,不能采用多重循环的方法实行穷举,那样编出的程序质量较差。程序中使用的算法不再是穷举法,而是回朔法。
The progressire divisible number is: 381654729
*问题分析与算法设计
问题本身可以简化为一个穷举问题:只要穷举每位数字的各种可能取值,按照题目的要求对穷举的结果进行判断就一定可以得到正确的结果。
问题中给出了“累进可除”这一条件,就使得我们可以在穷举法中加入条件判断。在穷举的过程中,当确定部分位的值后,马上就判断产生的该部分是否符合“累进可除”条件,若符合,则继续穷举下一位数字;否则刚刚产生的那一位数字就是错误的。这样将条件判断引入到穷举法之中,可以尽可能早的发现矛盾,尽早地放弃不必要穷举的值,从而提高程序的执行效率。
为了达到早期发现矛盾的目的,不能采用多重循环的方法实行穷举,那样编出的程序质量较差。程序中使用的算法不再是穷举法,而是回朔法。
#include <stdio.h>
#define NUM 9
int a[NUM+1];
int main()
{
int i, k, flag, not_finish = 1;
long sum;
i = 1;
a[1] = 1;
while (not_finish)
{
while (not_finish && i <= NUM)
{
for (flag = 1, k = 1; flag && k < i; k++)
if (a[k] == a[i])
flag = 0;
for(sum = 0, k = 1; flag && k <= i; k++)
{
sum = 10*sum + a[k];
if (sum%k)
flag = 0;
}
if (!flag)
{
if (a[i] == a[i-1])
{
i--;
if (i > 1 && a[i] == NUM)
a[i] = 1;
else if (1 == i && a[i] == NUM)
not_finish = 0;
else
a[i]++;
}
else if(a[i] == NUM)
a[i] = 1;
else
a[i]++;
}
else
if (++i <= NUM)
if (a[i-1] == NUM)
a[i] = 1;
else
a[i] = a[i-1] + 1;
}
if(not_finish)
{
printf("/nThe progressire divisiable number is:");
for (k = 1; k <= NUM; k++)
printf("%d",a[k]);
if (a[NUM-1] < NUM)
a[NUM-1]++;
else
a[NUM-1] = 1;
not_finish=0;
printf("\n");
}
}
return 0;
}
The progressire divisible number is: 381654729