利用Tensorflow实现多层感知器MLP

一、什么是Tensorflow

   TensorFlow 表达了高层次的机器学习计算,大幅简化了第一代系统,并且具备更好的灵活性和可延展性。
   TensorFlow,简单看就是Tensor和Flow,即意味着Tensor和Flow是TensorFlow最为基础的要素;Tensor意味着data,Flow意味着流动(意味着计算,意味着映射,即数据的流动,数据的计算,数据的映射,同时也体现数据是有向的流动、计算和映射)。

二、准备

1、网络结构:

   43个输入层神经元,60个隐层神经元,60个隐层神经元,1个输出神经元,为减少梯度弥散现象,设置relu(非线性映射函数)为隐层激活函数,这种激活函数更接近生物神经元的工作机制,即在达到阈值之前持续抑制,在超越阈值之后开始兴奋。输出层为一个神经元,使用sigmoid激活函数。

2、Dropout:

   过拟合是机器学习尤其是神经网络任务中经常发生的问题,除了随机梯度下降的一系列方法外(如小批次训练进行参数调整),还可将神经网络某一层的输出节点数据随机丢弃一部分,即令这部分节点输出值为0。这样做等价于创造出很多新样本,通过增大样本量,减少特征数量来防止过拟合。dropout也算是一种bagging方法,可以将每次丢弃节点输出视为对特征的一次采样,相当于我们训练了一个ensemble的神经网络模型,对每个样本都做特征采样,并构成一个融合的神经网络。

3、学习效率:

   神经网络的训练通常不是一个凸优化问题,有很多局部最优,因此通常不会采用标准的梯度下降算法,而是采用一些有更大可能跳出局部最优的算法,常用的如随机梯度下降SGD,而SGD本身也不稳定,其结果也会在最优解附近波动,且设置不同的学习效率可能会导致我们的网络落入截然不同的局部最优之中。对于SGD,我们希望开始训练时学习率大一些,以加速收敛的过程,而后期学习率低一些,以更稳定地落入局部最优解,因此常使用Adagrad、Adam等自适应的优化方法,可以在其默认参数上取得较好的效果;各优化方法比较

三、实现MLP

   以利用MLP进行入侵检测为例。

1、首先定义参数、权重和偏置

#===================
#定义参数、权重和偏置
#===================
# Parameters参数
learning_rate = 0.0001
training_epochs = 5
batch_size = 50000
display_step = 1
# Network Parameters网络结构
n_input = 43
n_hidden_1 = 60  # 1st layer number of features
n_hidden_2 = 60  # 2nd layer number of features
n_classes = 2#二分类
# tf Graph input 输入
x = tf.placeholder("float", [None, n_input])#占位,输入维度和数据类型
y = tf.placeholder("float", [None, n_classes])#占位,输出维度和数据类型
# Store layers weight & bias 权重和偏置
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

2、定义前馈神经网络

#====================
#前向传播算法,使用ReLU激活函数,并进行Dropout降采样
#====================
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])#tf.matmul矩阵乘法,然后各个维度加上偏置
    layer_1 = tf.nn.relu(layer_1)#第一个隐层的输出
    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)#第二个隐层的输出
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    out_layer = tf.nn.softmax(out_layer)
    return out_layer

3、模型训练与存储

#=======================
#模型训练和存储
#=======================
def multilayer_perceptron_train_save(x, weights, biases,x_train, y_train):
    # Construct model
    pred = multilayer_perceptron(x, weights, biases)
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    saver = tf.train.Saver()# Initiate tf saver
    model_path =r'E:\all_models\model.ckpt'
    sess = tf.InteractiveSession()# Starting Session
    tf.global_variables_initializer().run()# Initializing the variables
    for epoch in range(training_epochs):
        sess.run(optimizer, feed_dict={x: x_train, y : y_train})
        cc = sess.run(cost, feed_dict={x: x_train, y : y_train})
        if epoch % display_step == 0:
            correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))# Test model
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            accuracy_percentage = sess.run(accuracy, feed_dict={x: x_train, y : y_train})
            print("Training Step: ", "%04d" % (epoch), 'cost=', "{:.9f}".format(cc), "Accuracy: ", accuracy_percentage)
            xpoints.append(epoch)
            ypoints.append(accuracy_percentage * 100)
    print("Optimization Finished!")
    print(xpoints, ypoints)
    plt.plot(xpoints, ypoints)
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy Percentage')
    plt.title("Model Accuracy vs No of Epochs")
    plt.legend()
    plt.show()
    save_path = saver.save(sess, model_path)
    print("Model saved in file: %s" % save_path)
    return save_path
多层感知器(Multilayer Perceptron,MLP)是一种常用的神经网络模型,可以用来解决分类和回归问题。它由输入层、隐藏层和输出层组成,每一层都由多个神经元组成,相邻层之间的神经元之间有连接权重。 使用Python实现多层感知器模型的方法如下: 1. 导入所需的库:首先需要导入NumPy库用于数值计算,以及scikit-learn库用于数据预处理。 ```python import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split ``` 2. 准备数据:将原始数据集划分为训练集和测试集,并进行特征缩放。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ``` 3. 初始化权重和偏置:定义一个随机初始化权重和偏置的函数。 ```python def initialize_parameters(layer_dims): parameters = {} for l in range(1, len(layer_dims)): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters parameters = initialize_parameters(layer_dims) ``` 4. 前向传播:定义前向传播函数,计算神经网络的输出。 ```python def forward_propagation(X, parameters): A = X caches = [] for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = relu(Z) cache = (Z, A) caches.append(cache) ZL = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = sigmoid(ZL) return AL, caches AL, caches = forward_propagation(X_train, parameters) ``` 5. 计算损失:根据神经网络的输出和真实标签计算损失函数。 ```python def compute_cost(AL, Y): m = Y.shape[1] cost = (-1/m) * np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1-Y, np.log(1-AL))) return cost cost = compute_cost(AL, y_train) ``` 6. 反向传播:定义反向传播函数,计算梯度并更新参数。 ```python def backward_propagation(AL, Y, caches): grads = {} dZL = AL - Y dW = (1/m) * np.dot(dZL, A_prev.T) db = (1/m) * np.sum(dZL, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) grads['dW'] = dW grads['db'] = db return grads grads = backward_propagation(AL, y_train, caches) ``` 7. 参数更新:根据梯度和学习率更新参数。 ```python def update_parameters(parameters, grads, learning_rate): for l in range(1, L): parameters['W' + str(l)] -= learning_rate * grads['dW' + str(l)] parameters['b' + str(l)] -= learning_rate * grads['db' + str(l)] return parameters parameters = update_parameters(parameters, grads, learning_rate) ``` 8. 模型训练:将上述步骤整合到一个函数中,循环迭代多次进行模型训练。 ```python def model(X, Y, learning_rate, num_iterations): parameters = initialize_parameters(layer_dims) for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) return parameters parameters = model(X_train, y_train, learning_rate, num_iterations) ``` 以上就是使用Python实现多层感知器MLP)模型的主要步骤。根据具体数据集和问题,可能需要进行参数调优和模型评估等进一步步骤。在实际应用中,还可以使用其他性能更好的库(如TensorFlow、Keras)来实现多层感知器模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值