图像噪声
- 学习两种图像噪声,即椒盐噪声和高斯噪声。
- 使用python实现给图像添加椒盐噪声和高斯噪声
一、噪声的概念
-
在噪声的概念中,通常采用信噪比(Signal-Noise Rate, SNR)衡量图像噪声。通俗的讲就是信号占多少,噪声占多少,SNR越小,噪声占比越大。
-
在信号系统中,计量单位为dB,为10lg(PS/PN), PS和PN分别代表信号和噪声的有效功率。在这里,采用信号像素点的占比充当SNR,以衡量所添加噪声的多少。
-
常见噪声有 椒盐噪声 和 高斯噪声 ,椒盐噪声可以理解为斑点,随机出现在图像中的黑点或白点;高斯噪声可以理解为拍摄图片时由于光照等原因造成的噪声。
二、椒盐噪声
-
椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点(盐噪声)或者黑点(椒噪声),可能是亮的区域有黑色像素或是在暗的区域有白色像素,或是两者皆有。
-
成因:可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。
-
图像模拟添加椒盐噪声原理:通过随机获取像素点并设置为高亮度点和低灰度点来实现的,简单说就是随机的将图像某些像素值改为0或255
def sp_noise(image,prob):
'''
添加椒盐噪声
prob:噪声比例
'''
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[