对抗攻击3——BIM(Basic Iterative Method)

本文详细介绍了BasicIterativeMethod(BIM),它是FGSM的扩展,通过多次迭代生成对抗样本,每个步骤限定扰动范围。BIM不仅限于分类模型,还应用于语义分割。核心概念包括迭代次数、步长、邻域限制等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Basic Iterative Method是许多个FGSM方法的拓展之一,有时候它也被称作I-FGSM。BIM是FGSM多次迭代的版本,其中总的对抗扰动量为 ∥ r ∥ ∞ ≤ ϵ \|r\|_{\infty} \leq \epsilon rϵ。由BIM生成对抗样本的具体形式如下所示: x i + 1 ′ = C l i p ϵ { x i ′ + α ⋅ s i g n ( ∇ x L ( x i ′ , y ) ) } i = 0 , ⋯ n a n d x 0 ′ = x x^{\prime}_{i+1}=Clip_{\epsilon}\{x_i^{\prime}+\alpha\cdot\mathrm{sign}(\nabla_x\mathcal{L(x^{\prime}_{i},y)})\}\quad i=0,\cdots n \quad \mathrm{and} \quad x^{\prime}_0=x xi+1=Clipϵ{xi+αsign(xL(xi,y))}i=0,nandx0=x其中 n n n是总的迭代次数, 0 < α < ϵ 0<\alpha<\epsilon 0<α<ϵ是每次的迭代步长。 C l i p { ⋅ } Clip\{\cdot\} Clip{}表示将每个输入特征点限制在输入样本 x x x ϵ \epsilon ϵ邻域中。具体公式如下所示: C l i p ϵ { x i , ( u , v , w ) ′ } = min ⁡ { 255 , x u , v , w + ϵ , max ⁡ { 0 , x u , v , w − ϵ , x i , ( u , v , w ) ′ } } Clip_{\epsilon}\{x^{\prime}_{i,(u,v,w)}\}=\min\{255,x_{u,v,w}+\epsilon,\max\{0,x_{u,v,w}-\epsilon,x^{\prime}_{i,(u,v,w)}\} \} Clipϵ{xi,(u,v,w)}=min{255,xu,v,w+ϵ,max{0,xu,v,wϵ,xi,(u,v,w)}}除了分类模型,BIM也被应用在攻击语义分割的模型中,例如FCN。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值