Basic Iterative Method是许多个FGSM方法的拓展之一,有时候它也被称作I-FGSM。BIM是FGSM多次迭代的版本,其中总的对抗扰动量为 ∥ r ∥ ∞ ≤ ϵ \|r\|_{\infty} \leq \epsilon ∥r∥∞≤ϵ。由BIM生成对抗样本的具体形式如下所示: x i + 1 ′ = C l i p ϵ { x i ′ + α ⋅ s i g n ( ∇ x L ( x i ′ , y ) ) } i = 0 , ⋯ n a n d x 0 ′ = x x^{\prime}_{i+1}=Clip_{\epsilon}\{x_i^{\prime}+\alpha\cdot\mathrm{sign}(\nabla_x\mathcal{L(x^{\prime}_{i},y)})\}\quad i=0,\cdots n \quad \mathrm{and} \quad x^{\prime}_0=x xi+1′=Clipϵ{xi′+α⋅sign(∇xL(xi′,y))}i=0,⋯nandx0′=x其中 n n n是总的迭代次数, 0 < α < ϵ 0<\alpha<\epsilon 0<α<ϵ是每次的迭代步长。 C l i p { ⋅ } Clip\{\cdot\} Clip{⋅}表示将每个输入特征点限制在输入样本 x x x的 ϵ \epsilon ϵ邻域中。具体公式如下所示: C l i p ϵ { x i , ( u , v , w ) ′ } = min { 255 , x u , v , w + ϵ , max { 0 , x u , v , w − ϵ , x i , ( u , v , w ) ′ } } Clip_{\epsilon}\{x^{\prime}_{i,(u,v,w)}\}=\min\{255,x_{u,v,w}+\epsilon,\max\{0,x_{u,v,w}-\epsilon,x^{\prime}_{i,(u,v,w)}\} \} Clipϵ{xi,(u,v,w)′}=min{255,xu,v,w+ϵ,max{0,xu,v,w−ϵ,xi,(u,v,w)′}}除了分类模型,BIM也被应用在攻击语义分割的模型中,例如FCN。
对抗攻击3——BIM(Basic Iterative Method)
最新推荐文章于 2024-09-08 20:29:52 发布