Hilbert空间理论

定义1(内积空间): X X X是域 K \mathbb{K} K上的线性空间,其中记 K \mathbb{K} K是复数域 C \mathbb{C} C或实数域 R \mathbb{R} R X X X上的一个二元函数 a : X × X → K a:X \times X \rightarrow \mathbb{K} a:X×XK称为一个内积,如果:
(1) a ( α x + β y , z ) = α a ( x , z ) + β a ( y , z ) a(\alpha x+ \beta y,z)=\alpha a(x,z)+\beta a(y,z) a(αx+βy,z)=αa(x,z)+βa(y,z)
(2) a ( x , α y + β z ) = α ˉ a ( x , y ) + β ˉ a ( x , z ) a(x,\alpha y + \beta z)=\bar{\alpha}a(x,y)+\bar{\beta}a(x,z) a(x,αy+βz)=αˉa(x,y)+βˉa(x,z)
(3) a ( x , x ) ≥ 0 a(x,x)\ge 0 a(x,x)0,且 a ( x , x ) = 0 ⟺ x = 0 a(x,x)=0\Longleftrightarrow x=0 a(x,x)=0x=0
(4) a ( x , y ) = a ( y , x ) ‾ a(x,y)=\overline{a(y,x)} a(x,y)=a(y,x)
对所有 x , y , z ∈ X , α , β ∈ K x,y,z\in X,\alpha,\beta\in \mathbb{K} x,y,zX,α,βK成立, ( X , a ) (X,a) (X,a)称为内积空间。

命题1(Cauchy-Schwarz): 在内积空间 ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,))上,令 ∥ x ∥ = ( x , x ) 1 / 2 \|x\|=(x,x)^{1/2} x=(x,x)1/2称其为 x x x的范数,则有 ∣ ( x , y ) ∣ ≤ ∥ x ∥ ∥ y ∥ , ∀ x , y ∈ X , |(x,y)|\le \|x\|\|y\|,\quad \forall x,y \in X, (x,y)xy,x,yX,而且其中等号当且仅当 x x x y y y线性相关时成立。

推论1: x , y ∈ X x,y \in X x,yX α ∈ C \alpha \in \mathbb{C} αC,有
(1) ∥ x + y ∥ < ∥ x ∥ + ∥ y ∥ \|x+y\|<\|x\|+\|y\| x+y<x+y
(2) ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x\|=|\alpha|\|x\| αx=αx
(3) ∥ x ∥ ≥ 0 \|x\|\ge 0 x0,且 ∥ x ∥ = 0 ⟺ x = 0 \|x\|=0 \Longleftrightarrow x=0 x=0x=0

定义2: 若内积空间 ( X , ( ⋅ , ⋅ ) , ρ ) (X,(\cdot,\cdot),\rho) (X,(,),ρ)是完备距离空间,就称此空间为一个Hilbert空间。距离空间 ( X , ρ ) (X,\rho) (X,ρ)上的点列 { x n } \{x_n\} {xn}称为基本列,是指当 n , m → ∞ n,m\rightarrow \infty n,m时, ρ ( x n , x m ) → 0 \rho(x_n,x_m)\rightarrow 0 ρ(xn,xm)0。距离空间 ( X , ρ ) (X,\rho) (X,ρ)称为完备的,是指每个基本列都是收敛列。

命题1: 给定内积空间 ( X , ( ⋅ , ⋅ ) , ρ ) (X,(\cdot,\cdot),\rho) (X,(,),ρ)。假定 ( X , ρ ) (X,\rho) (X,ρ)的完备化空间是 H H H,则在 H H H上存在内积 ( ⋅ , ⋅ ) H (\cdot,\cdot)_H (,)H H H H上的距离是由内积 ( ⋅ , ⋅ ) X (\cdot,\cdot)_X (,)X导出的,并且当 x , y ∈ X x,y\in X x,yX ( x , y ) X = ( x , y ) H (x,y)_X=(x,y)_H (x,y)X=(x,y)H

定义3: H H H是Hilbert空间, x , y ∈ H x,y\in H x,yH。若 ( x , y ) = 0 (x,y)=0 (x,y)=0,就称 x x x y y y正交,记作 x ⊥ y x\perp y xy。又设 A , B A,B A,B H H H的非空子集,若 ∀ x ∈ A \forall x \in A xA y ∈ B y \in B yB均有 x ⊥ y x \perp y xy,称 A A A B B B正交,记作 A ⊥ B A \perp B AB。此外集合 { x ∈ H ∣ x ⊥ A } \{x\in H|x \perp A\} {xHxA}称为 A A A的正交补,记作 A ⊥ A^{\perp} A

命题2: x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn H H H中两两正交,则 ∥ x 1 + x 2 + ⋯ + x n ∥ 2 = ∥ x 1 ∥ 2 + ∥ x 2 ∥ 2 + ⋯ + ∥ x n ∥ 3 \|x_1+x_2+\cdots+x_n\|^2=\|x_1\|^2+\|x_2\|^2+\cdots+\|x_n\|^3 x1+x2++xn2=x12+x22++xn3

定义4: E \mathcal{E} E是Hilbert空间 H H H中一个子集合。若 ∀ e , f ∈ E \forall e,f \in \mathcal{E} e,fE e ≠ f e \ne f e=f时有 e ⊥ f e \perp f ef,则称 E \mathcal{E} E是正交集;若还有对每个 e ∈ E e\in \mathcal{E} eE ∥ e ∥ = 1 \|e\|=1 e=1 E \mathcal{E} E称为标准正交集;又如果 E ⊥ = { θ } \mathcal{E}^{\perp}=\{\theta\} E={θ},那么称 E \mathcal{E} E是完备的。

引理1: E \mathcal{E} E是Hilbert空间 H H H中一个子集合。若 ∀ e , f ∈ E \forall e,f \in \mathcal{E} e,fE e ≠ f e \ne f e=f时有 e ⊥ f e \perp f ef,则称 E \mathcal{E} E是正交集;若还有对每个 e ∈ E e\in \mathcal{E} eE ∥ e ∥ = 1 \|e\|=1 e=1 E \mathcal{E} E称为标准正交集;又如果 E ⊥ = { θ } \mathcal{E}^{\perp}=\{\theta\} E={θ},那么称 E \mathcal{E} E是完备的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值