权重衰减
上一节中我们观察了过拟合现象,即模型的训练误差远小于它在测试集上的误差。虽然增大训练数据集可能会减轻过拟合,但是获取额外的训练数据往往代价高昂。本节介绍应对过拟合问题的常用方法:权重衰减(weight decay)。
方法
权重衰减等价于L2L_2L2范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。我们先描述L2L_2L2范数正则化,再解释它为何又称权重衰减。
L2L_2L2范数正则化在模型原损失函数基础上添加L2L_2L2数惩罚项,从而得到训练所需要最小化的函数。L2L_2L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归损失函数
ℓ(w1,w2,b)=1n∑i=1n12(x1(i)w1+x2(i)w2+b−y(i))2\ell(w_1, w_2, b) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right)^2ℓ(w1,w2,b)=n1i=1∑n21(x1(i)w1+x2(i)w2+b−y(i))2
为例,其中w1w_1w1, w2w_2w2是权重参数, bbb是偏差参数,样本iii的输入为x1(i)x_1^{(i)}x1(i),x2(i)x_2^{(i)}x2(i),标签为y(i)y^{(i)}y(i),样本数为nnn.将权重参数用向量w=[w1,w2]\boldsymbol{w} = [w_1, w_2]w=[w1,w2],带有L2L_2L2范数相的新损失函数为
ℓ(w1,w2,b)+λ2n∥w∥2,\ell(w_1, w_2, b) + \frac{\lambda}{2n} \|\boldsymbol{w}\|^2,ℓ(w1,w2,b)+2nλ∥w∥2,
其中超参数λ>0λ>0λ>0。当权重参数均为0时,惩罚项最小。当λλ较大时,惩罚项在损失函数中的比重较大,这通常会使学到的权重参数的元素较接近0。当λλ设为0时,惩罚项完全不起作用。上式中L2L_2L2范数平方∥w∥2∥w∥^2∥w∥2 展开后得到w12+w22w^2_1+w_2^2w12+w22。有了L2L_2L2范数惩罚项后,在小批量随机梯度下降中,我们将线性回归一节中权重w1w_1w1和w2w_2w2 的迭代方式更改为
w1←(1−ηλ∣B∣)w1−η∣B∣∑i∈Bx1(i)(x1(i)w1+x2(i)w2+b−y(i)),w2←(1−ηλ∣B∣)w2−η∣B∣∑i∈Bx2(i)(x1(i)w1+x2(i)w2+b−y(i)).\begin{aligned}w_1 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\w_2 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right).\end{aligned}w1w2←(1−∣B∣ηλ)w1−∣B∣ηi∈B∑x1(i)(x1(i)w1+x2(i)w2+b−y(i)),←(1−∣B∣ηλ)w2−∣B∣ηi∈B∑x2(i)(x1(i)w1+x2(i)w2+b−y(i)).
可见,L2L_2L2 范数正则化令权重w1w_1w1和w2w_2w2 先自乘小于1的数,再减去不含惩罚项的梯度。因此,L2L_2L2范数正则化又叫权重衰减。权重衰减通过惩罚绝对值较大的模型参数为需要学习的模型增加了限制,这可能对过拟合有效。实际场景中,我们有时也在惩罚项中添加偏差元素的平方和。
小结
- 正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
- 权重衰减等价于L2L_2L2范数正则化,通常会使学到的权重参数的元素较接近0。
本文探讨了过拟合现象及如何通过权重衰减(等价于L2正则化)来应对。权重衰减通过在损失函数中添加惩罚项,使模型参数值较小,有效防止过拟合,特别适用于线性回归等模型。
160

被折叠的 条评论
为什么被折叠?



