【机试题】2019华为优招机试题(附超详细解答)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_38410730/article/details/81633634

华为优招机试题还是老样子的三道大题,分值为100、200、300。理论上是答对一道即可过关,但这是理论上的。下面是2018年8月1日批次的华为优招机试题详解。

 

重复字符排序

题目描述:找出输入字符串中的重复字符,再根据ASCII码把重复的字符从小到大排序。

例如:输入ABCABCdd,输出ABCd。

解答:计数排序,没有什么难度(计数排序是华为机试题出现次数最多的排序方法,没有之一):

#include <iostream>
using namespace std;
#include <string>

int main()
{
	string s;
	getline(cin, s);
	int count[200] = { 0 };
	for (int i = 0; i < s.length(); i++)
		count[s.at(i)]++;
	for (int i = 0; i < 127; i++) {
		if (count[i] > 1)
			cout << (char)i;
	}

	return 0;
}

 

重复字符最长串

题目描述:给定一串字符,里面有些字符有连续出现的特点,请寻找这些连续出现字符中最长的串,如果最长的串有多个,请输出字符ASCII码最小的那一串。

例如:输入aaabbbbbcccccccczzzzzzzz,输出cccccccc。

解答:利用两个长度为2的数组,一个存放当前字符及其连续重复长度,另一个存放历史最长重复的字符及其长度值。只要做好逻辑思路就应该能轻松做完:

#include <iostream>
using namespace std;
#include <string>

int main()
{
	string s;
	getline(cin, s);
	char c[2] = { s.at(0) };
	int num[2] = { 1 };
	for (int i = 1; i < s.length(); i++) {
		if (s.at(i) == c[0])
			num[0]++;
		else {
			if (num[0] > num[1] || (num[0] == num[1] && c[0] < c[1])) {
				c[1] = c[0];
				num[1] = num[0];
			}
			c[0] = s.at(i);
			num[0] = 1;
			
		}
	}
	if (num[0] > num[1] || (num[0] == num[1] && c[0] < c[1])) {
		c[1] = c[0];
		num[1] = num[0];
	}
	for (int i = 0; i < num[1]; i++)
		cout << c[1];

	return 0;
}

 

小镇广告牌

题目描述:已知某小镇的房子沿直线分布,给定一个有序整数数组arr,里面的每个镇代表小镇每栋房子的一维坐标点。现在需要建N个广告牌,广告牌只能建立在这些坐标点上,使得每个坐标点离广告牌的总距离最短,求这个最短的总距离。

输入描述:输入最后一个为N值,其余的为arr值,需要考生自行处理。

例如:输入1 2 3 4 5 1000 2,输出6。

解答:这是一条经典的动态规划的题目:

设置一个数组dis[i][j]

#include <iostream>
using namespace std;

int main()
{
	int arr[100] = { 0 };
	int m = 0, n;		//m:小镇个数;n:广告牌个数
	int x, dis[100][100] = { 0 };
	int total[100][100] = { 0 };

	while (cin >> x)
		arr[m++] = x;
	n = arr[--m];

	for (int i = 0; i < m; i++) {
		for (int j = i; j < m; j++) {
			for (int k = i; k <= j; k++)
				dis[i][j] += abs(arr[(i + j) / 2] - arr[k]);
		}
	}

	for (int i = 0; i < m; i++)
		total[i][1] = dis[i][m - 1];
	for (int i = 2; i <= n; i++) {
		for (int j = 0; j < m; j++) {
			for (int k = j; k <= m-i; k++)
				total[j][i] = dis[j][k] + total[k + 1][i - 1];
		}
	}

	cout << total[0][n] << endl;

	return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页