AB实验_如何计算P值、效应量和统计功效

本文详细解释了AB实验中的核心概念,包括P值的含义及其与显著性水平的关系,效应量用来衡量样本间差异的实际意义,以及统计功效在决策中的作用。介绍了如何通过参数和非参数检验计算P值,以及如何根据效应量和样本量计算统计功效,涉及单样本t检验、独立样本t检验、卡方检验、F检验和方差分析的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做AB实验的核心过程就是做一个假设检验,为了让这个假设检验可以支持接下来的决策,我们通常需要计算三个值,P值、效应量和统计功效。

P值跟显著性水平比较(一般取0.05),若结果具有统计显著性(P<0.05),那么还需要继续计算其效应量(Effect_size);如果结果不具有统计显著性(P<0.05),并且还需要继续进行决策的话,那么需要计算功效(Power)。

P值

P值的含义就是在原假设的分布下,出现实验样本情况的概率。

通俗地讲就是,我假设你就是一个成绩普通的学生(假设普通学生的成绩f服从均值70分,标准差10分的正态分布),然后随机抽取了你的几次成绩,一算下来平均90分。那么在均值是70分,标准差是10分的分布情况下,抽取到90分的概率P=(1-95%)/2=2.5%。

在假设检验中,我们通常使用各种参数检验或者非参数检验来计算P值。

效应量(effect size)

效应量代表样本间差异大小的指标,毕竟世界上没有两篇一毛一样的叶子,只有样本足够多,一定可以检测出任务两类样本的显著差异。

这个时候就需要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fff2zrx

谢谢老板

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值