线性代数笔记——李宏毅老师
basic conception
Zero Matrix
matrix with all zero entries, denoted by O O O (any size) or O m × n O_{m \times n} Om×n
For example, a 2-by-3 zero matrix can be denoted
O 2 × 3 = [ 0 0 0 0 0 0 ] O_{2 \times 3} = \left[ \begin{matrix} 0 & 0 & 0\\ 0 & 0 & 0 \\ \end{matrix} \right] O2×3=[000000]
Identity Matrix
must be square,Sometimes I n I_n In is simply written as I I I (any size).
I 3 = [ 1 0 0 0 1 0 0 0 1 ] I_3 = \left[ \begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] I3=⎣⎡100010001⎦⎤
( 0 , 1 ) (0,1) (0,1) matrices
all the entities of A are zeros and ones called (0,1)matrices.
I 3 = [ 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 ] I_3 = \left[ \begin{matrix} 0&1 & 1 & 0\\ 1 & 0 & 0&1 \\ 1&0&0&0\\ 0 & 1 & 0&0 \end{matrix} \right] I3=⎣⎢⎢⎡0110100110000100⎦⎥⎥⎤
get symmetirc matrix: A T A A^TA ATA
在生活中,我们会经常用到(0,1)矩阵(涉及图)
Standard Vectors
we can write any vector [ a b ] \left[ \begin{matrix} {a}\\ {b}\\ \end{matrix} \right] [ab]in R 2 R^2 R2 as a linear combination of the two vectors [ 1 0 ] \left[ \begin{matrix} {1}\\ {0}\\ \end{matrix} \right] [10]and [ 0 1 ] \left[ \begin{matrix} {0}\\ {1}\\ \end{matrix} \right] [01]
as follows:
[ a b ] = a [ 1 0 ] + b [ 0 1 ] \left[ \begin{matrix} {a}\\ {b}\\ \end{matrix} \right]=a\left[ \begin{matrix} {1}\\ {0}\\ \end{matrix} \right]+b\left[ \begin{matrix} {0}\\ {1}\\ \end{matrix} \right] [ab]=a[10]+b[01]
the vectors [ 1 0 ] \left[ \begin{matrix} {1}\\ {0}\\ \end{matrix} \right] [10] and [ 0 1 ] \left[ \begin{matrix} {0}\\ {1}\\ \end{matrix} \right] [01] are called the standard vectors of R 2 R^2 R2 .
In general, we define the standard vectors of R n R^n Rn by
e 1 = [ 1 0 ⋮ 0 ] e 2 = [ 0 1 ⋮ 0 ] ⋯ e n = [ 0 0 ⋮ 1 ] \mathbf{e_1} =\left[ \begin{matrix} {1}\\ {0}\\ {\vdots}\\ {0} \end{matrix} \right] \qquad \mathbf{e_2} =\left[ \begin{matrix} {0}\\ {1}\\ {\vdots}\\ {0} \end{matrix} \right]\qquad \cdots \qquad \mathbf{e_n} =\left[ \begin{matrix} {0}\\ {0}\\ {\vdots}\\ {1} \end{matrix}\right] e1=⎣⎢⎢⎢⎡10⋮0⎦⎥⎥⎥⎤e2=⎣⎢⎢⎢⎡01⋮0⎦⎥⎥⎥⎤⋯en=⎣⎢⎢⎢⎡00⋮1⎦⎥⎥⎥⎤
Linear Combination
- Given a vector set { u 1 , u 2 , ⋯ , u k } \{\mathbf{u_1},\mathbf{u_2},\cdots,\mathbf{u_k}\} {
u1,u2,⋯,uk}
The linear combination of the vectors in the set:- v = c 1 u 1 + c 2 u 2 + ⋯ + c k u k v=c_1\mathbf{u_1}+c_2\mathbf{u_2} + ⋯ + c_k\mathbf{u_k} v=c1u1+c2u2+⋯+ckuk
- c 1 , c 2 , ⋯ , c k c_1, c_2, ⋯ , c_k c1,c2,⋯,ck are scalars (Coefficients of linear combination)
- the set of coefficients that express one vector as a linear combination of the others need not be unique
- 以线性方程组的思想理解线性组合
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a m 1 x 1 + a m 2 x n + . . . + a m n x n = b n \left \{ \begin{array}{c} a_{11}x_1+a_{12}x_{2}+...+a_{1n}x_{n} = b_{1} \\ a_{21}x_1+a_{22}x_{2}+...+a_{2n}x_{n} = b_{2} \\ \vdots\\ a_{m1}x_1+a_{m2}x_{n}+...+a_{mn}x_{n} = b_{n} \end{array} \right. ⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2⋮am1x1+am2xn+...+amnxn=bn
A = [ a 1 a 2 ⋯ , a n ] A =\left[ \begin{matrix} \mathbf{a_1}&\mathbf{a_2}&\mathbf{\cdots},\mathbf{a_n} \end{matrix} \right] A=[a1a2⋯,an]
x = [ x 1 x 2 ⋮ x n ] c o e f f i e n t s \mathbf{x} =\left[ \begin{matrix} {x_1}\\ {x_2}\\ {\vdots}\\ {x_n} \end{matrix} \right] \qquad coeffients x=⎣⎢⎢⎢⎡x1x2⋮xn⎦⎥⎥⎥⎤coeffients
A x = x 1 a 1 + x 2 a 2 + x