李宏毅线性代数笔记6:矩阵的计算

本文介绍了线性代数中矩阵的基本概念,包括特殊矩阵如数量矩阵、对角矩阵、基本矩阵和初等矩阵,以及单位矩阵。讨论了矩阵的可交换性、初等行变换和阶梯矩阵的关系,特别是简化阶梯矩阵与矩阵可逆的条件。矩阵乘法的意义被解释为线性函数的组合,并分析了乘法顺序对运算效率的影响。此外,还阐述了可逆矩阵的性质,包括唯一性和与满秩的关系,以及如何求解矩阵的逆。最后提到了伴随矩阵在求逆中的应用。
摘要由CSDN通过智能技术生成

1 矩阵的几个概念

1.1 特殊矩阵

1.1.1 数量矩阵

主对角线上元素是同一个数,其余元素全为0的n级矩阵

1.1.2 对角矩阵(diagonal matrix)

主对角线元素之外全为0的方阵

记作diag{d1,d2,……dn}

1.1.3 基本矩阵

只有一个元素是1,其余元素全为0的矩阵

(i,j)元为1的基本矩阵:Eij

用Eij左乘(右乘)一个矩阵A,就相当于把A的第j行搬到第i行(第i列搬到第j列),而其余元素变为0 【左行右列】

1.1.4 初等矩阵

由单位矩阵经过一次初等行/列变换得到的矩阵

用初等矩阵左乘(右乘)一个矩阵,相当于对这个矩阵做相应的初等行(列)变换【左行右列】

1.1.5 单位矩阵

1.2 可交换

如果AB=BA,那么A,B可交换

一般来说,(AB)^kA^kB^k,但是如果A,B可交换,那么(AB)^k=A^kB^k

(AB)^T=B^TA^T

 1.3 矩阵集合

2 初等行变化与矩阵相乘

 3 阶梯矩阵REF和简化阶梯矩阵RREF

3.1 REF 

Row Echelon Form 行阶梯矩阵

 3.2 RREF

Reduced Row Echelon Form 简化行阶梯矩阵

 

 3.3 RREF 和原始矩阵之间的关系

 

 初等行变换不改变列之间的线性关系

span——向量张成的空间

因为初等行变换之后,行相当于是等价的,原来能线性表出哪些向量,现在还能;而列就不一样了。

 4 矩阵向量乘法

矩阵相当于一个线性系统

对于一个多元线性方程组如下图,输入为x=[x1 x2 x3...xn],经过一个线性变换后,输出为b=[b1 b2 x3...bm],这个线性系统便是对x做了一个线性的处理,其处理的方法为矩阵A

对一个系数矩阵Am×n和一个代表参数的向量xn相乘,拿下图举例,有两种理解方式:

 

  1. 从行层面上理解:
    A的两行表示在坐标系中如下图右侧所示;对照方程组,将向量中的x1 x2与矩阵行中的元素对应相乘后组成向量:首先是A1,:x相乘,发现结果为0,证明二者垂直,而后是A2,:x相乘,得出结果。(每一个维度是A的一行与x的内积) ——>结果的每一个维度都是A对应的行和x的内积结果
  2. 从列层面上理解:
    数据域的
    x1A:,1相乘,相当于逆向延长两倍[1 −3] 这个向量,同理,x2A:,2相乘,相当于正向缩小为原来长度的一半,二者形成的列向量叠加后与1有相同的结果。——>结果是以x为系数,A每一列为向量的矢量和

 5 矩阵乘法

 矩阵的乘法相当于两个线性函数的组合

5.1 矩阵相乘的先后顺序对于运算速度的影响

虽然使用交换律对矩阵相乘的结果没有什么影响,但是对于运算的次数,先进行分析,再视情况适当交换运算顺序会带来很大的效益

(三个矩阵相乘的规则是按顺序两两相乘,因此运算次数是加的关系,不同结合情况对运算次数显然有不同影响)。

矩阵 A(M*N) 和矩阵B(N*P)相乘,A的每一行要和B的每一列进行内积(也就是进行N次乘法+N次求和),

—>然后A和B分别由M行和P列,相当于一共M*P对行列对

—>所以这两个矩阵相乘,相当于M*N*P次操作

回到这个问题,如果是先CP,再A和乘积相乘,那么CP需要M*N*P次操作,10^6数量级;然后A在和结果相乘K*M*P,又是10^6数量级

如果是先AC,那么是K*M*N,1000的数量级;然后结果再和P相乘K*N*P ,1000的数量级

5.2 GPU的加速效果

 6 可逆矩阵

6.1 互为可逆矩阵  

 6.2 可逆矩阵唯一

如果AB=I,AC=I,那么B=C

证明:B=B(AC)=(BA)C=C

 6.3 矩阵乘积的逆

6.4 矩阵转置的逆

 6.5 矩阵可逆的条件

说白了就是方阵满秩

换言之,如果一个矩阵A是可逆的,当且仅当A的简化阶梯矩阵是单位矩阵

6.6 为何可逆矩阵需要满秩方阵?

6.6.1 单射(one to one)

单射:每个v射向不同的f(v),但不一定每个f(v)都会被射到

 如果是矮胖型的矩阵,那么列之间肯定线性相关,那么对于某一个特定的 f(v) ,会存在两个不同的v1和v2,使得f(v1)=f(v),f(v2)=f(v),不满足单射(每个v射向不同的f(v)的条件

而单射的逆呢?因为不一定每个f都被映射到,所以单射的逆不能保证也是单射(可能会由在域空间上的值不在定义域空间内)

为了保证one to one ,也就是每个v,f(v)的值不同,我们需要矩阵A各个列线性无关

6.6.2 满射(onto)

满射是值每个值域空间的点都会被映射到(虽然可能多个v射到一个值域上去)

也就是说,对于任意一个b,Av=b都有解,

按照前面的说法(“线性方程有解的充要条件”),矩阵A的简化阶梯矩阵不能有0行(也就是说,它不能是高瘦型矩阵);同时它的秩等于它的行数

满射的逆甚至可能不是映射(一个值域上的值可能对应了几个定义域上的值)

6.6.3 矩阵可逆的条件

所以如果一个矩阵可逆,那么它必须同时是单射和满射

'

 6.7 矩阵逆的求法

 6.8 用伴随矩阵求矩阵的逆

 伴随矩阵C的每个元素是A对应的代数余子式

证明

 矩阵的行列式=某一行元素*其代数余子式的和

Σ第i行元素*第j行元素的代数余子式=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值