线性代数-矩阵及其运算

线性方程组和矩阵及矩阵的运算

  • 矩阵:由m行n列排成的数表,称为 m ∗ n m*n mn矩阵,记 A m ∗ n A_{m*n} Amn。各个元素简称.
  • 行数和列数相等的成为方阵,记 A n A_n An.
  • 元素全为零的矩阵称为零矩阵,不同型的零矩阵不相等
  • 两个矩阵行数和列数相等,为同型矩阵。
  • 两个矩阵相等就是两个矩阵同型且对应元素相等。
加法

同型矩阵才能相加,对应元素相加
性质

  • 交换律 A+B = B+A
  • 结合律 (A+B)+C =A+(B+C)
  • A+0 =A
  • A+(-A)= 0
数乘

数乘:将数乘到每个元素上
任何一个数与任何一个矩阵都可以做数乘
k A m ∗ n = ( k a i j ) m ∗ n kA_{m*n} = (ka_{ij})_{m*n} kAmn=(kaij)mn
性质 ( k , l k,l k,l为数)

  • 1 A = A 1A =A 1A=A
  • ( k l ) A = k ( l A ) (kl)A=k(lA) (kl)A=k(lA)
  • ( k + l ) A = k A + l A (k+l)A=kA+lA (k+l)A=kA+lA
  • k ( A + B ) = k A + k B k(A+B)=kA+kB k(A+B)=kA+kB
  • ∣ k A ∣ = k n ∣ A ∣ ‾ \underline{ |kA|=k^n|A|} kA=knA
乘法

A m ∗ n B n ∗ m = C m ∗ m A_{m*n}B_{n*m}=C_{m*m} AmnBnm=Cmm

  • 矩阵乘法:左列右行相等
  • 如果 A B = B A AB=BA AB=BA,则称A,B是可交换的
  • A ! = 0 , B ! = 0 , 但 可 能 A B = 0 A != 0,B != 0, 但可能AB=0 A!=0,B!=0,AB=0
  • 一般情况下, A B ! = B A AB!= BA AB!=BA,无交换
  • A X = A Y , 不 能 得 出 X + Y AX=AY ,不能得出X+Y AX=AY,X+Y无消去

性质

  • 结合律 ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  • 分配率 A ( B + C ) = A B + A C , ( A + B ) C = A C + B C A(B+C)=AB+AC,(A+B)C=AC+BC A(B+C)=AB+AC,(A+B)C=AC+BC
  • k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB),k为数

特殊矩阵

  • 对角矩阵:主对角线意外都是零,记 A = d i a g ( a 1 , a 2 , . . . , a n ) A=diag(a_1,a_2,...,a_n) A=diag(a1,a2,...,an)
  • 主对角线全是1的对角矩阵是单位矩阵,记E
    • 单位矩阵性质 AE=A,EA=A

矩阵方幂
A 0 = E , A k = A k − 1 A , ( k 为 正 整 数 ) A^0=E,A^k=A^{k-1}A,(k为正整数) A0=E,Ak=Ak1A,(k)
方幂性质 (k,l为非负数)

  • A k A l = A k + l A^kA^l=A^{k+l} AkAl=Ak+l
  • ( A k ) l = A k l (A^k)^l=A^{kl} (Ak)l=Akl
  • A B = B A , 则 ( A B ) k = B k A k AB=BA ,则(AB)^k=B^kA^k AB=BA,(AB)k=BkAk,反之不成立

( A B ) k = ( A B ) ( A B ) ( A B ) ! = A k B k (AB)^k=(AB)(AB)(AB) !=A^kB^k (AB)k=(AB)(AB)(AB)!=AkBk

给定多项式f(x),和n阶方阵A,将f(x)中x用A代替,f(A)为方阵A的方阵多项式。其中常数项为cE,也是方阵。方阵多项式表示一个方阵。

转置

转置性质

  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A + B ) T = A T + B T (A+B)^T =A^T+B^T (A+B)T=AT+BT
  • ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT ,k为数
  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT ,积的转置等于反序转置的积

A = A T A=A^T A=AT,A为对称矩阵
A = − A T A=-A^T A=AT,A为反对称矩阵

矩阵的行列式

必须是方阵
性质

  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
  • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB

两个矩阵和的行列式没有运算性质

逆矩阵

逆矩阵解决了矩阵乘法的逆运算。
如果直接研究,需要区分左乘和右乘

逆矩阵相关定义

  1. 逆矩阵
    A B = B A = E AB=BA=E AB=BA=E
    AB矩阵为可逆矩阵,则AB互逆,记 B = A − 1 B=A^{-1} B=A1
    可逆矩阵又叫非奇异矩阵。由于AB可交换位置,且最后结果为方阵,故AB都是方阵
    E是可逆矩阵,0不是可逆矩阵。

A,B为同阶可逆矩阵,则AB也是可逆矩阵,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

定理 若矩阵可逆,则逆矩阵唯一

  1. 伴随矩阵 A ∗ A^* A
    在这里插入图片描述
    A i j 放 在 ( j , i ) 处 ‾ \underline {A_{ij}放在(j,i)处} Aijj,i

伴随矩阵的性质

  • 对于任意方阵,有 A A ∗ = A ∗ A = ∣ A ∣ E AA^{*}=A^{*}A=|A|E AA=AA=AE

矩阵可逆的充分必要条件 ∣ A ∣ ! = 0 |A| != 0 A!=0,当 ∣ A ∣ ! = 0 |A| != 0 A!=0时, A − 1 = 1 ∣ A ∣ A ∗ A^{-1}={1 \over {|A|}}A^* A1=A1A

设A是方阵,若存在B,使 A B = E AB=E AB=E,则A可逆,且逆矩阵为B

逆矩阵性质

  • ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  • ( k A ) − 1 = 1 k A − 1 (kA)^{-1}={1\over k}A^{-1} (kA)1=k1A1
  • ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T
  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

分块矩阵

将高阶矩阵化为低阶矩阵
在这里插入图片描述
分块矩阵乘法
设A为 m ∗ n m*n mn,B为 n ∗ l n*l nl
在这里插入图片描述
分块对角矩阵的det等于每个块的det相乘

矩阵的初等变化

三种初等变化

  • 互换某两行
  • 某行乘以非零常数
  • 某一行的若干倍加到另一行

初等行,列变化统称为初等变化,初等变化是可逆的。

如果矩阵A可以经过有限次的初等变化为矩阵B,则矩阵A,B是等价的,记为A ~ B。
矩阵等价的性质

  • 反身性 A~A
  • 传递性 A ~ B,B~C,则A ~C
  • 对称性 A~B ,则B ~A

定理

  • 如果一个矩阵每一行第一个非零元素的下方和左下方元素都是0,且零行都排在最下方,这样的矩阵称为行阶梯型。零矩阵也是行阶梯型。行阶梯型不唯一。

  • 行阶梯型中,每行第一个非零元素都是1,且所在列的其他元素都是0,这样称为行最简型。是唯一的。

  • 任何矩阵都可以通过初等行变化化为行阶梯型矩阵和最简行阶梯型矩阵。

  • 任何 m ∗ n m*n mn的矩阵A都与型为 { E r 0 0 0 } \left\{ \begin{matrix} E_r & 0\\ 0 & 0 \end{matrix} \right\} {Er000}的矩阵等价,其中 E r E_r Er为r阶单位矩阵,且r唯一,是矩阵A的秩,仅当A=0时r=0。该矩阵称为A的标准等价型。(可以通过行,列变化)

对线性方程组的增广矩阵做初等行变化,对于方程组的解不变

初等矩阵

初等矩阵:

  • 对单位矩阵做一次初等变化所得到的拒绝称为初等矩阵。
    只有三种
  • E(i,j),交换i,j两行
  • E(i(k)) ,第i行或列乘以k
  • E(i+j(k))第j行的k倍加到第i行,或第i列的k倍加到第j列

定理

  • 初等矩阵是可逆的,且其逆矩阵任然是初等矩阵
  • 对矩阵A做一次初等变化所得到的矩阵等于对A左乘 一个相应的初等矩阵;对矩阵A左一次初等变化所得到的矩阵等于对A乘一个相应的初等矩阵
  • 矩阵A,B等价的充要条件是存在一些初等矩阵 P 1 , P 2 , . . . P n , Q 1 , Q 2 , . . . , Q m P_1,P_2,...P_n,Q_1,Q_2,...,Q_m P1,P2,...Pn,Q1,Q2,...,Qm,使 A = P n . . . P 2 P 1 B Q 1 Q 2 . . . Q n A=P_n...P_2P_1BQ_1Q_2...Q_n A=Pn...P2P1BQ1Q2...Qn
  • 矩阵A可逆的充要条件是A可表示为有限个初等矩阵的乘积
  • 矩阵A,B等价的充要条件是存在可逆矩阵Q,P,使 A = P B Q A=PBQ A=PBQ

reference

东北大学 线性代数 mooc https://www.icourse163.org/course/NEU-1001638002?tid=1003308041

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值